Showing 200 of total 644 results (show query)

mastoffel

rptR:Repeatability Estimation for Gaussian and Non-Gaussian Data

Estimating repeatability (intra-class correlation) from Gaussian, binary, proportion and Poisson data.

Maintained by Martin Stoffel. Last updated 6 months ago.

25.9 match 17 stars 8.53 score 112 scripts 2 dependents

wraff

wrMisc:Analyze Experimental High-Throughput (Omics) Data

The efficient treatment and convenient analysis of experimental high-throughput (omics) data gets facilitated through this collection of diverse functions. Several functions address advanced object-conversions, like manipulating lists of lists or lists of arrays, reorganizing lists to arrays or into separate vectors, merging of multiple entries, etc. Another set of functions provides speed-optimized calculation of standard deviation (sd), coefficient of variance (CV) or standard error of the mean (SEM) for data in matrixes or means per line with respect to additional grouping (eg n groups of replicates). A group of functions facilitate dealing with non-redundant information, by indexing unique, adding counters to redundant or eliminating lines with respect redundancy in a given reference-column, etc. Help is provided to identify very closely matching numeric values to generate (partial) distance matrixes for very big data in a memory efficient manner or to reduce the complexity of large data-sets by combining very close values. Other functions help aligning a matrix or data.frame to a reference using partial matching or to mine an experimental setup to extract patterns of replicate samples. Many times large experimental datasets need some additional filtering, adequate functions are provided. Convenient data normalization is supported in various different modes, parameter estimation via permutations or boot-strap as well as flexible testing of multiple pair-wise combinations using the framework of 'limma' is provided, too. Batch reading (or writing) of sets of files and combining data to arrays is supported, too.

Maintained by Wolfgang Raffelsberger. Last updated 7 months ago.

18.5 match 4.44 score 33 scripts 4 dependents

leonawicz

tabr:Music Notation Syntax, Manipulation, Analysis and Transcription in R

Provides a music notation syntax and a collection of music programming functions for generating, manipulating, organizing, and analyzing musical information in R. Music syntax can be entered directly in character strings, for example to quickly transcribe short pieces of music. The package contains functions for directly performing various mathematical, logical and organizational operations and musical transformations on special object classes that facilitate working with music data and notation. The same music data can be organized in tidy data frames for a familiar and powerful approach to the analysis of large amounts of structured music data. Functions are available for mapping seamlessly between these formats and their representations of musical information. The package also provides an API to 'LilyPond' (<https://lilypond.org/>) for transcribing musical representations in R into tablature ("tabs") and sheet music. 'LilyPond' is open source music engraving software for generating high quality sheet music based on markup syntax. The package generates 'LilyPond' files from R code and can pass them to the 'LilyPond' command line interface to be rendered into sheet music PDF files or inserted into R markdown documents. The package offers nominal MIDI file output support in conjunction with rendering sheet music. The package can read MIDI files and attempts to structure the MIDI data to integrate as best as possible with the data structures and functionality found throughout the package.

Maintained by Matthew Leonawicz. Last updated 6 months ago.

guitar-tablaturelilypondlilypond-apimusic-analysismusic-datamusic-notationmusic-programmingmusic-syntaxmusic-transcriptionsheet-music

6.5 match 132 stars 7.87 score 94 scripts

fishr-core-team

FSA:Simple Fisheries Stock Assessment Methods

A variety of simple fish stock assessment methods.

Maintained by Derek H. Ogle. Last updated 2 months ago.

fishfisheriesfisheries-managementfisheries-stock-assessmentpopulation-dynamicsstock-assessment

3.4 match 68 stars 11.08 score 1.7k scripts 6 dependents

john-d-fox

RcmdrMisc:R Commander Miscellaneous Functions

Various statistical, graphics, and data-management functions used by the Rcmdr package in the R Commander GUI for R.

Maintained by John Fox. Last updated 1 years ago.

5.2 match 1 stars 7.00 score 432 scripts 42 dependents

tidyverse

dplyr:A Grammar of Data Manipulation

A fast, consistent tool for working with data frame like objects, both in memory and out of memory.

Maintained by Hadley Wickham. Last updated 14 days ago.

data-manipulationgrammarcpp

1.3 match 4.8k stars 24.68 score 659k scripts 7.8k dependents

tidymodels

infer:Tidy Statistical Inference

The objective of this package is to perform inference using an expressive statistical grammar that coheres with the tidy design framework.

Maintained by Simon Couch. Last updated 6 months ago.

2.0 match 736 stars 15.75 score 3.5k scripts 18 dependents

mirzaghaderi

rtpcr:qPCR Data Analysis

Various methods are employed for statistical analysis and graphical presentation of real-time PCR (quantitative PCR or qPCR) data. 'rtpcr' handles amplification efficiency calculation, statistical analysis and graphical representation of real-time PCR data based on up to two reference genes. By accounting for amplification efficiency values, 'rtpcr' was developed using a general calculation method described by Ganger et al. (2017) <doi:10.1186/s12859-017-1949-5> and Taylor et al. (2019) <doi:10.1016/j.tibtech.2018.12.002>, covering both the Livak and Pfaffl methods. Based on the experimental conditions, the functions of the 'rtpcr' package use t-test (for experiments with a two-level factor), analysis of variance (ANOVA), analysis of covariance (ANCOVA) or analysis of repeated measure data to calculate the fold change (FC, Delta Delta Ct method) or relative expression (RE, Delta Ct method). The functions further provide standard errors and confidence intervals for means, apply statistical mean comparisons and present significance. To facilitate function application, different data sets were used as examples and the outputs were explained. ‘rtpcr’ package also provides bar plots using various controlling arguments. The 'rtpcr' package is user-friendly and easy to work with and provides an applicable resource for analyzing real-time PCR data.

Maintained by Ghader Mirzaghaderi. Last updated 26 days ago.

data-analysisqpcr

5.9 match 1 stars 4.88 score 3 scripts

alanocallaghan

contrast:A Collection of Contrast Methods

One degree of freedom contrasts for 'lm', 'glm', 'gls', and 'geese' objects.

Maintained by Alan OCallaghan. Last updated 2 years ago.

3.5 match 3 stars 7.27 score 164 scripts 1 dependents

usepa

httk:High-Throughput Toxicokinetics

Pre-made models that can be rapidly tailored to various chemicals and species using chemical-specific in vitro data and physiological information. These tools allow incorporation of chemical toxicokinetics ("TK") and in vitro-in vivo extrapolation ("IVIVE") into bioinformatics, as described by Pearce et al. (2017) (<doi:10.18637/jss.v079.i04>). Chemical-specific in vitro data characterizing toxicokinetics have been obtained from relatively high-throughput experiments. The chemical-independent ("generic") physiologically-based ("PBTK") and empirical (for example, one compartment) "TK" models included here can be parameterized with in vitro data or in silico predictions which are provided for thousands of chemicals, multiple exposure routes, and various species. High throughput toxicokinetics ("HTTK") is the combination of in vitro data and generic models. We establish the expected accuracy of HTTK for chemicals without in vivo data through statistical evaluation of HTTK predictions for chemicals where in vivo data do exist. The models are systems of ordinary differential equations that are developed in MCSim and solved using compiled (C-based) code for speed. A Monte Carlo sampler is included for simulating human biological variability (Ring et al., 2017 <doi:10.1016/j.envint.2017.06.004>) and propagating parameter uncertainty (Wambaugh et al., 2019 <doi:10.1093/toxsci/kfz205>). Empirically calibrated methods are included for predicting tissue:plasma partition coefficients and volume of distribution (Pearce et al., 2017 <doi:10.1007/s10928-017-9548-7>). These functions and data provide a set of tools for using IVIVE to convert concentrations from high-throughput screening experiments (for example, Tox21, ToxCast) to real-world exposures via reverse dosimetry (also known as "RTK") (Wetmore et al., 2015 <doi:10.1093/toxsci/kfv171>).

Maintained by John Wambaugh. Last updated 1 months ago.

comptoxord

2.5 match 27 stars 10.22 score 307 scripts 1 dependents

bioc

mixOmics:Omics Data Integration Project

Multivariate methods are well suited to large omics data sets where the number of variables (e.g. genes, proteins, metabolites) is much larger than the number of samples (patients, cells, mice). They have the appealing properties of reducing the dimension of the data by using instrumental variables (components), which are defined as combinations of all variables. Those components are then used to produce useful graphical outputs that enable better understanding of the relationships and correlation structures between the different data sets that are integrated. mixOmics offers a wide range of multivariate methods for the exploration and integration of biological datasets with a particular focus on variable selection. The package proposes several sparse multivariate models we have developed to identify the key variables that are highly correlated, and/or explain the biological outcome of interest. The data that can be analysed with mixOmics may come from high throughput sequencing technologies, such as omics data (transcriptomics, metabolomics, proteomics, metagenomics etc) but also beyond the realm of omics (e.g. spectral imaging). The methods implemented in mixOmics can also handle missing values without having to delete entire rows with missing data. A non exhaustive list of methods include variants of generalised Canonical Correlation Analysis, sparse Partial Least Squares and sparse Discriminant Analysis. Recently we implemented integrative methods to combine multiple data sets: N-integration with variants of Generalised Canonical Correlation Analysis and P-integration with variants of multi-group Partial Least Squares.

Maintained by Eva Hamrud. Last updated 4 days ago.

immunooncologymicroarraysequencingmetabolomicsmetagenomicsproteomicsgenepredictionmultiplecomparisonclassificationregressionbioconductorgenomicsgenomics-datagenomics-visualizationmultivariate-analysismultivariate-statisticsomicsr-pkgr-project

1.7 match 182 stars 13.71 score 1.3k scripts 22 dependents

dnychka

fields:Tools for Spatial Data

For curve, surface and function fitting with an emphasis on splines, spatial data, geostatistics, and spatial statistics. The major methods include cubic, and thin plate splines, Kriging, and compactly supported covariance functions for large data sets. The splines and Kriging methods are supported by functions that can determine the smoothing parameter (nugget and sill variance) and other covariance function parameters by cross validation and also by restricted maximum likelihood. For Kriging there is an easy to use function that also estimates the correlation scale (range parameter). A major feature is that any covariance function implemented in R and following a simple format can be used for spatial prediction. There are also many useful functions for plotting and working with spatial data as images. This package also contains an implementation of sparse matrix methods for large spatial data sets and currently requires the sparse matrix (spam) package. Use help(fields) to get started and for an overview. The fields source code is deliberately commented and provides useful explanations of numerical details as a companion to the manual pages. The commented source code can be viewed by expanding the source code version and looking in the R subdirectory. The reference for fields can be generated by the citation function in R and has DOI <doi:10.5065/D6W957CT>. Development of this package was supported in part by the National Science Foundation Grant 1417857, the National Center for Atmospheric Research, and Colorado School of Mines. See the Fields URL for a vignette on using this package and some background on spatial statistics.

Maintained by Douglas Nychka. Last updated 9 months ago.

fortran

1.8 match 15 stars 12.60 score 7.7k scripts 295 dependents

dmurdoch

plotrix:Various Plotting Functions

Lots of plots, various labeling, axis and color scaling functions. The author/maintainer died in September 2023.

Maintained by Duncan Murdoch. Last updated 1 years ago.

1.9 match 5 stars 11.31 score 9.2k scripts 361 dependents

berndbischl

BBmisc:Miscellaneous Helper Functions for B. Bischl

Miscellaneous helper functions for and from B. Bischl and some other guys, mainly for package development.

Maintained by Bernd Bischl. Last updated 2 years ago.

2.0 match 20 stars 10.59 score 980 scripts 69 dependents