Showing 200 of total 1027 results (show query)

laplacesdemonr

LaplacesDemon:Complete Environment for Bayesian Inference

Provides a complete environment for Bayesian inference using a variety of different samplers (see ?LaplacesDemon for an overview).

Maintained by Henrik Singmann. Last updated 12 months ago.

33.5 match 93 stars 13.45 score 1.8k scripts 60 dependents

spatstat

spatstat.model:Parametric Statistical Modelling and Inference for the 'spatstat' Family

Functionality for parametric statistical modelling and inference for spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Supports parametric modelling, formal statistical inference, and model validation. Parametric models include Poisson point processes, Cox point processes, Neyman-Scott cluster processes, Gibbs point processes and determinantal point processes. Models can be fitted to data using maximum likelihood, maximum pseudolikelihood, maximum composite likelihood and the method of minimum contrast. Fitted models can be simulated and predicted. Formal inference includes hypothesis tests (quadrat counting tests, Cressie-Read tests, Clark-Evans test, Berman test, Diggle-Cressie-Loosmore-Ford test, scan test, studentised permutation test, segregation test, ANOVA tests of fitted models, adjusted composite likelihood ratio test, envelope tests, Dao-Genton test, balanced independent two-stage test), confidence intervals for parameters, and prediction intervals for point counts. Model validation techniques include leverage, influence, partial residuals, added variable plots, diagnostic plots, pseudoscore residual plots, model compensators and Q-Q plots.

Maintained by Adrian Baddeley. Last updated 6 days ago.

analysis-of-variancecluster-processconfidence-intervalscox-processdeterminantal-point-processesgibbs-processinfluenceleveragemodel-diagnosticsneyman-scottparameter-estimationpoisson-processspatial-analysisspatial-modellingspatial-point-processesstatistical-inference

22.3 match 5 stars 9.09 score 6 scripts 46 dependents

merliseclyde

BAS:Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling

Package for Bayesian Variable Selection and Model Averaging in linear models and generalized linear models using stochastic or deterministic sampling without replacement from posterior distributions. Prior distributions on coefficients are from Zellner's g-prior or mixtures of g-priors corresponding to the Zellner-Siow Cauchy Priors or the mixture of g-priors from Liang et al (2008) <DOI:10.1198/016214507000001337> for linear models or mixtures of g-priors from Li and Clyde (2019) <DOI:10.1080/01621459.2018.1469992> in generalized linear models. Other model selection criteria include AIC, BIC and Empirical Bayes estimates of g. Sampling probabilities may be updated based on the sampled models using sampling w/out replacement or an efficient MCMC algorithm which samples models using a tree structure of the model space as an efficient hash table. See Clyde, Ghosh and Littman (2010) <DOI:10.1198/jcgs.2010.09049> for details on the sampling algorithms. Uniform priors over all models or beta-binomial prior distributions on model size are allowed, and for large p truncated priors on the model space may be used to enforce sampling models that are full rank. The user may force variables to always be included in addition to imposing constraints that higher order interactions are included only if their parents are included in the model. This material is based upon work supported by the National Science Foundation under Division of Mathematical Sciences grant 1106891. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Maintained by Merlise Clyde. Last updated 4 months ago.

bayesianbayesian-inferencegeneralized-linear-modelslinear-regressionlogistic-regressionmcmcmodel-selectionpoisson-regressionpredictive-modelingregressionvariable-selectionfortranopenblas

6.8 match 44 stars 10.81 score 420 scripts 3 dependents

cran

CopulaREMADA:Copula Mixed Models for Multivariate Meta-Analysis of Diagnostic Test Accuracy Studies

The bivariate copula mixed model for meta-analysis of diagnostic test accuracy studies in Nikoloulopoulos (2015) <doi:10.1002/sim.6595> and Nikoloulopoulos (2018) <doi:10.1007/s10182-017-0299-y>. The vine copula mixed model for meta-analysis of diagnostic test accuracy studies accounting for disease prevalence in Nikoloulopoulos (2017) <doi:10.1177/0962280215596769> and also accounting for non-evaluable subjects in Nikoloulopoulos (2020) <doi:10.1515/ijb-2019-0107>. The hybrid vine copula mixed model for meta-analysis of diagnostic test accuracy case-control and cohort studies in Nikoloulopoulos (2018) <doi:10.1177/0962280216682376>. The D-vine copula mixed model for meta-analysis and comparison of two diagnostic tests in Nikoloulopoulos (2019) <doi:10.1177/0962280218796685>. The multinomial quadrivariate D-vine copula mixed model for meta-analysis of diagnostic tests with non-evaluable subjects in Nikoloulopoulos (2020) <doi:10.1177/0962280220913898>. The one-factor copula mixed model for joint meta-analysis of multiple diagnostic tests in Nikoloulopoulos (2022) <doi:10.1111/rssa.12838>. The multinomial six-variate 1-truncated D-vine copula mixed model for meta-analysis of two diagnostic tests accounting for within and between studies dependence in Nikoloulopoulos (2024) <doi:10.1177/09622802241269645>. The 1-truncated D-vine copula mixed models for meta-analysis of diagnostic accuracy studies without a gold standard (Nikoloulopoulos, 2024).

Maintained by Aristidis K. Nikoloulopoulos. Last updated 5 months ago.

39.0 match 2 stars 1.60 score 10 scripts

tirgit

missCompare:Intuitive Missing Data Imputation Framework

Offers a convenient pipeline to test and compare various missing data imputation algorithms on simulated and real data. These include simpler methods, such as mean and median imputation and random replacement, but also include more sophisticated algorithms already implemented in popular R packages, such as 'mi', described by Su et al. (2011) <doi:10.18637/jss.v045.i02>; 'mice', described by van Buuren and Groothuis-Oudshoorn (2011) <doi:10.18637/jss.v045.i03>; 'missForest', described by Stekhoven and Buhlmann (2012) <doi:10.1093/bioinformatics/btr597>; 'missMDA', described by Josse and Husson (2016) <doi:10.18637/jss.v070.i01>; and 'pcaMethods', described by Stacklies et al. (2007) <doi:10.1093/bioinformatics/btm069>. The central assumption behind 'missCompare' is that structurally different datasets (e.g. larger datasets with a large number of correlated variables vs. smaller datasets with non correlated variables) will benefit differently from different missing data imputation algorithms. 'missCompare' takes measurements of your dataset and sets up a sandbox to try a curated list of standard and sophisticated missing data imputation algorithms and compares them assuming custom missingness patterns. 'missCompare' will also impute your real-life dataset for you after the selection of the best performing algorithm in the simulations. The package also provides various post-imputation diagnostics and visualizations to help you assess imputation performance.

Maintained by Tibor V. Varga. Last updated 4 years ago.

comparisoncomparison-benchmarksimputationimputation-algorithmimputation-methodsimputationskolmogorov-smirnovmissingmissing-datamissing-data-imputationmissing-status-checkmissing-valuesmissingnesspost-imputation-diagnosticsrmse

10.5 match 39 stars 5.89 score 40 scripts

davidorme

caper:Comparative Analyses of Phylogenetics and Evolution in R

Functions for performing phylogenetic comparative analyses.

Maintained by David Orme. Last updated 1 years ago.

7.9 match 1 stars 7.41 score 928 scripts 5 dependents

bioc

GRaNIE:GRaNIE: Reconstruction cell type specific gene regulatory networks including enhancers using single-cell or bulk chromatin accessibility and RNA-seq data

Genetic variants associated with diseases often affect non-coding regions, thus likely having a regulatory role. To understand the effects of genetic variants in these regulatory regions, identifying genes that are modulated by specific regulatory elements (REs) is crucial. The effect of gene regulatory elements, such as enhancers, is often cell-type specific, likely because the combinations of transcription factors (TFs) that are regulating a given enhancer have cell-type specific activity. This TF activity can be quantified with existing tools such as diffTF and captures differences in binding of a TF in open chromatin regions. Collectively, this forms a gene regulatory network (GRN) with cell-type and data-specific TF-RE and RE-gene links. Here, we reconstruct such a GRN using single-cell or bulk RNAseq and open chromatin (e.g., using ATACseq or ChIPseq for open chromatin marks) and optionally (Capture) Hi-C data. Our network contains different types of links, connecting TFs to regulatory elements, the latter of which is connected to genes in the vicinity or within the same chromatin domain (TAD). We use a statistical framework to assign empirical FDRs and weights to all links using a permutation-based approach.

Maintained by Christian Arnold. Last updated 5 months ago.

softwaregeneexpressiongeneregulationnetworkinferencegenesetenrichmentbiomedicalinformaticsgeneticstranscriptomicsatacseqrnaseqgraphandnetworkregressiontranscriptionchipseq

10.8 match 5.40 score 24 scripts

paulnorthrop

exdex:Estimation of the Extremal Index

Performs frequentist inference for the extremal index of a stationary time series. Two types of methodology are used. One type is based on a model that relates the distribution of block maxima to the marginal distribution of series and leads to the semiparametric maxima estimators described in Northrop (2015) <doi:10.1007/s10687-015-0221-5> and Berghaus and Bucher (2018) <doi:10.1214/17-AOS1621>. Sliding block maxima are used to increase precision of estimation. A graphical block size diagnostic is provided. The other type of methodology uses a model for the distribution of threshold inter-exceedance times (Ferro and Segers (2003) <doi:10.1111/1467-9868.00401>). Three versions of this type of approach are provided: the iterated weight least squares approach of Suveges (2007) <doi:10.1007/s10687-007-0034-2>, the K-gaps model of Suveges and Davison (2010) <doi:10.1214/09-AOAS292> and a similar approach of Holesovsky and Fusek (2020) <doi:10.1007/s10687-020-00374-3> that we refer to as D-gaps. For the K-gaps and D-gaps models this package allows missing values in the data, can accommodate independent subsets of data, such as monthly or seasonal time series from different years, and can incorporate information from right-censored inter-exceedance times. Graphical diagnostics for the threshold level and the respective tuning parameters K and D are provided.

Maintained by Paul J. Northrop. Last updated 11 months ago.

block-maximaextremal-indexextremeextreme-value-statisticsextremesinferencemaximasemiparametricsemiparametric-estimationsemiparametric-maxima-estimatorsthetathresholdvaluecpp

10.9 match 4.92 score 11 scripts 5 dependents

cdriveraus

ctsem:Continuous Time Structural Equation Modelling

Hierarchical continuous (and discrete) time state space modelling, for linear and nonlinear systems measured by continuous variables, with limited support for binary data. The subject specific dynamic system is modelled as a stochastic differential equation (SDE) or difference equation, measurement models are typically multivariate normal factor models. Linear mixed effects SDE's estimated via maximum likelihood and optimization are the default. Nonlinearities, (state dependent parameters) and random effects on all parameters are possible, using either max likelihood / max a posteriori optimization (with optional importance sampling) or Stan's Hamiltonian Monte Carlo sampling. See <https://github.com/cdriveraus/ctsem/raw/master/vignettes/hierarchicalmanual.pdf> for details. Priors may be used. For the conceptual overview of the hierarchical Bayesian linear SDE approach, see <https://www.researchgate.net/publication/324093594_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling>. Exogenous inputs may also be included, for an overview of such possibilities see <https://www.researchgate.net/publication/328221807_Understanding_the_Time_Course_of_Interventions_with_Continuous_Time_Dynamic_Models> . Stan based functions are not available on 32 bit Windows systems at present. <https://cdriver.netlify.app/> contains some tutorial blog posts.

Maintained by Charles Driver. Last updated 10 days ago.

stochastic-differential-equationstime-seriescpp

5.3 match 42 stars 9.58 score 366 scripts 1 dependents

yuimaproject

yuima:The YUIMA Project Package for SDEs

Simulation and Inference for SDEs and Other Stochastic Processes.

Maintained by Stefano M. Iacus. Last updated 1 days ago.

openblascpp

6.5 match 9 stars 7.26 score 92 scripts 2 dependents

flr

FLSAM:An Implementation of the State-Space Assessment Model for FLR

This package provides an FLR wrapper to the SAM state-space assessment model.

Maintained by N.T. Hintzen. Last updated 3 months ago.

9.5 match 4 stars 4.51 score 406 scripts

functionaldata

fdapace:Functional Data Analysis and Empirical Dynamics

A versatile package that provides implementation of various methods of Functional Data Analysis (FDA) and Empirical Dynamics. The core of this package is Functional Principal Component Analysis (FPCA), a key technique for functional data analysis, for sparsely or densely sampled random trajectories and time courses, via the Principal Analysis by Conditional Estimation (PACE) algorithm. This core algorithm yields covariance and mean functions, eigenfunctions and principal component (scores), for both functional data and derivatives, for both dense (functional) and sparse (longitudinal) sampling designs. For sparse designs, it provides fitted continuous trajectories with confidence bands, even for subjects with very few longitudinal observations. PACE is a viable and flexible alternative to random effects modeling of longitudinal data. There is also a Matlab version (PACE) that contains some methods not available on fdapace and vice versa. Updates to fdapace were supported by grants from NIH Echo and NSF DMS-1712864 and DMS-2014626. Please cite our package if you use it (You may run the command citation("fdapace") to get the citation format and bibtex entry). References: Wang, J.L., Chiou, J., Müller, H.G. (2016) <doi:10.1146/annurev-statistics-041715-033624>; Chen, K., Zhang, X., Petersen, A., Müller, H.G. (2017) <doi:10.1007/s12561-015-9137-5>.

Maintained by Yidong Zhou. Last updated 9 months ago.

cpp

3.5 match 31 stars 11.46 score 474 scripts 25 dependents

bioc

BASiCS:Bayesian Analysis of Single-Cell Sequencing data

Single-cell mRNA sequencing can uncover novel cell-to-cell heterogeneity in gene expression levels in seemingly homogeneous populations of cells. However, these experiments are prone to high levels of technical noise, creating new challenges for identifying genes that show genuine heterogeneous expression within the population of cells under study. BASiCS (Bayesian Analysis of Single-Cell Sequencing data) is an integrated Bayesian hierarchical model to perform statistical analyses of single-cell RNA sequencing datasets in the context of supervised experiments (where the groups of cells of interest are known a priori, e.g. experimental conditions or cell types). BASiCS performs built-in data normalisation (global scaling) and technical noise quantification (based on spike-in genes). BASiCS provides an intuitive detection criterion for highly (or lowly) variable genes within a single group of cells. Additionally, BASiCS can compare gene expression patterns between two or more pre-specified groups of cells. Unlike traditional differential expression tools, BASiCS quantifies changes in expression that lie beyond comparisons of means, also allowing the study of changes in cell-to-cell heterogeneity. The latter can be quantified via a biological over-dispersion parameter that measures the excess of variability that is observed with respect to Poisson sampling noise, after normalisation and technical noise removal. Due to the strong mean/over-dispersion confounding that is typically observed for scRNA-seq datasets, BASiCS also tests for changes in residual over-dispersion, defined by residual values with respect to a global mean/over-dispersion trend.

Maintained by Catalina Vallejos. Last updated 5 months ago.

immunooncologynormalizationsequencingrnaseqsoftwaregeneexpressiontranscriptomicssinglecelldifferentialexpressionbayesiancellbiologybioconductor-packagegene-expressionrcpprcpparmadilloscrna-seqsingle-cellopenblascppopenmp

3.6 match 83 stars 10.26 score 368 scripts 1 dependents

s-mckay-curtis

mcmcplots:Create Plots from MCMC Output

Functions for convenient plotting and viewing of MCMC output.

Maintained by S. McKay Curtis. Last updated 7 years ago.

5.3 match 4 stars 6.53 score 880 scripts 4 dependents

hannahcomiskey

mcmsupply:Estimating Public and Private Sector Contraceptive Market Supply Shares

Family Planning programs and initiatives typically use nationally representative surveys to estimate key indicators of a country’s family planning progress. However, in recent years, routinely collected family planning services data (Service Statistics) have been used as a supplementary data source to bridge gaps in the surveys. The use of service statistics comes with the caveat that adjustments need to be made for missing private sector contributions to the contraceptive method supply chain. Evaluating the supply source of modern contraceptives often relies on Demographic Health Surveys (DHS), where many countries do not have recent data beyond 2015/16. Fortunately, in the absence of recent surveys we can rely on statistical model-based estimates and projections to fill the knowledge gap. We present a Bayesian, hierarchical, penalized-spline model with multivariate-normal spline coefficients, to account for across method correlations, to produce country-specific,annual estimates for the proportion of modern contraceptive methods coming from the public and private sectors. This package provides a quick and convenient way for users to access the DHS modern contraceptive supply share data at national and subnational administration levels, estimate, evaluate and plot annual estimates with uncertainty for a sample of low- and middle-income countries. Methods for the estimation of method supply shares at the national level are described in Comiskey, Alkema, Cahill (2022) <arXiv:2212.03844>.

Maintained by Hannah Comiskey. Last updated 11 months ago.

jagscpp

6.7 match 2 stars 5.15 score 20 scripts

sprfmo

jjmR:Graphics and diagnostics tools for SPRFMO's Joint Jack Mackerel model

Graphics and diagnostics tools for SPRFMO's Joint Jack Mackerel model.

Maintained by Ricardo Oliveros-Ramos. Last updated 5 months ago.

8.1 match 2 stars 3.81 score 12 scripts 1 dependents