Showing 200 of total 389 results (show query)

cran

frailtypack:Shared, Joint (Generalized) Frailty Models; Surrogate Endpoints

The following several classes of frailty models using a penalized likelihood estimation on the hazard function but also a parametric estimation can be fit using this R package: 1) A shared frailty model (with gamma or log-normal frailty distribution) and Cox proportional hazard model. Clustered and recurrent survival times can be studied. 2) Additive frailty models for proportional hazard models with two correlated random effects (intercept random effect with random slope). 3) Nested frailty models for hierarchically clustered data (with 2 levels of clustering) by including two iid gamma random effects. 4) Joint frailty models in the context of the joint modelling for recurrent events with terminal event for clustered data or not. A joint frailty model for two semi-competing risks and clustered data is also proposed. 5) Joint general frailty models in the context of the joint modelling for recurrent events with terminal event data with two independent frailty terms. 6) Joint Nested frailty models in the context of the joint modelling for recurrent events with terminal event, for hierarchically clustered data (with two levels of clustering) by including two iid gamma random effects. 7) Multivariate joint frailty models for two types of recurrent events and a terminal event. 8) Joint models for longitudinal data and a terminal event. 9) Trivariate joint models for longitudinal data, recurrent events and a terminal event. 10) Joint frailty models for the validation of surrogate endpoints in multiple randomized clinical trials with failure-time and/or longitudinal endpoints with the possibility to use a mediation analysis model. 11) Conditional and Marginal two-part joint models for longitudinal semicontinuous data and a terminal event. 12) Joint frailty-copula models for the validation of surrogate endpoints in multiple randomized clinical trials with failure-time endpoints. 13) Generalized shared and joint frailty models for recurrent and terminal events. Proportional hazards (PH), additive hazard (AH), proportional odds (PO) and probit models are available in a fully parametric framework. For PH and AH models, it is possible to consider type-varying coefficients and flexible semiparametric hazard function. Prediction values are available (for a terminal event or for a new recurrent event). Left-truncated (not for Joint model), right-censored data, interval-censored data (only for Cox proportional hazard and shared frailty model) and strata are allowed. In each model, the random effects have the gamma or normal distribution. Now, you can also consider time-varying covariates effects in Cox, shared and joint frailty models (1-5). The package includes concordance measures for Cox proportional hazards models and for shared frailty models. 14) Competing Joint Frailty Model: A single type of recurrent event and two terminal events. 15) functions to compute power and sample size for four Gamma-frailty-based designs: Shared Frailty Models, Nested Frailty Models, Joint Frailty Models, and General Joint Frailty Models. Each design includes two primary functions: a power function, which computes power given a specified sample size; and a sample size function, which computes the required sample size to achieve a specified power. Moreover, the package can be used with its shiny application, in a local mode or by following the link below.

Maintained by Virginie Rondeau. Last updated 10 days ago.

fortranopenmp

29.2 match 7 stars 5.56 score 1 dependents

functionaldata

fdapace:Functional Data Analysis and Empirical Dynamics

A versatile package that provides implementation of various methods of Functional Data Analysis (FDA) and Empirical Dynamics. The core of this package is Functional Principal Component Analysis (FPCA), a key technique for functional data analysis, for sparsely or densely sampled random trajectories and time courses, via the Principal Analysis by Conditional Estimation (PACE) algorithm. This core algorithm yields covariance and mean functions, eigenfunctions and principal component (scores), for both functional data and derivatives, for both dense (functional) and sparse (longitudinal) sampling designs. For sparse designs, it provides fitted continuous trajectories with confidence bands, even for subjects with very few longitudinal observations. PACE is a viable and flexible alternative to random effects modeling of longitudinal data. There is also a Matlab version (PACE) that contains some methods not available on fdapace and vice versa. Updates to fdapace were supported by grants from NIH Echo and NSF DMS-1712864 and DMS-2014626. Please cite our package if you use it (You may run the command citation("fdapace") to get the citation format and bibtex entry). References: Wang, J.L., Chiou, J., Mรผller, H.G. (2016) <doi:10.1146/annurev-statistics-041715-033624>; Chen, K., Zhang, X., Petersen, A., Mรผller, H.G. (2017) <doi:10.1007/s12561-015-9137-5>.

Maintained by Yidong Zhou. Last updated 9 months ago.

cpp

11.9 match 31 stars 11.46 score 474 scripts 25 dependents

mwheymans

psfmi:Prediction Model Pooling, Selection and Performance Evaluation Across Multiply Imputed Datasets

Pooling, backward and forward selection of linear, logistic and Cox regression models in multiply imputed datasets. Backward and forward selection can be done from the pooled model using Rubin's Rules (RR), the D1, D2, D3, D4 and the median p-values method. This is also possible for Mixed models. The models can contain continuous, dichotomous, categorical and restricted cubic spline predictors and interaction terms between all these type of predictors. The stability of the models can be evaluated using (cluster) bootstrapping. The package further contains functions to pool model performance measures as ROC/AUC, Reclassification, R-squared, scaled Brier score, H&L test and calibration plots for logistic regression models. Internal validation can be done across multiply imputed datasets with cross-validation or bootstrapping. The adjusted intercept after shrinkage of pooled regression coefficients can be obtained. Backward and forward selection as part of internal validation is possible. A function to externally validate logistic prediction models in multiple imputed datasets is available and a function to compare models. For Cox models a strata variable can be included. Eekhout (2017) <doi:10.1186/s12874-017-0404-7>. Wiel (2009) <doi:10.1093/biostatistics/kxp011>. Marshall (2009) <doi:10.1186/1471-2288-9-57>.

Maintained by Martijn Heymans. Last updated 2 years ago.

cox-regressionimputationimputed-datasetslogisticmultiple-imputationpoolpredictorregressionselectionsplinespline-predictors

10.0 match 10 stars 7.17 score 70 scripts

growthcharts

brokenstick:Broken Stick Model for Irregular Longitudinal Data

Data on multiple individuals through time are often sampled at times that differ between persons. Irregular observation times can severely complicate the statistical analysis of the data. The broken stick model approximates each subjectโ€™s trajectory by one or more connected line segments. The times at which segments connect (breakpoints) are identical for all subjects and under control of the user. A well-fitting broken stick model effectively transforms individual measurements made at irregular times into regular trajectories with common observation times. Specification of the model requires three variables: time, measurement and subject. The model is a special case of the linear mixed model, with time as a linear B-spline and subject as the grouping factor. The main assumptions are: subjects are exchangeable, trajectories between consecutive breakpoints are straight, random effects follow a multivariate normal distribution, and unobserved data are missing at random. The package contains functions for fitting the broken stick model to data, for predicting curves in new data and for plotting broken stick estimates. The package supports two optimization methods, and includes options to structure the variance-covariance matrix of the random effects. The analyst may use the software to smooth growth curves by a series of connected straight lines, to align irregularly observed curves to a common time grid, to create synthetic curves at a user-specified set of breakpoints, to estimate the time-to-time correlation matrix and to predict future observations. See <doi:10.18637/jss.v106.i07> for additional documentation on background, methodology and applications.

Maintained by Stef van Buuren. Last updated 2 years ago.

b-splinegrowth-curveslinear-mixed-modelslongitudinal-data

12.2 match 9 stars 5.33 score 12 scripts

anestistouloumis

SimCorMultRes:Simulates Correlated Multinomial Responses

Simulates correlated multinomial responses conditional on a marginal model specification.

Maintained by Anestis Touloumis. Last updated 12 months ago.

binarylongitudinal-studiesmultinomialsimulation

7.5 match 7 stars 6.04 score 26 scripts 2 dependents

drizopoulos

JM:Joint Modeling of Longitudinal and Survival Data

Shared parameter models for the joint modeling of longitudinal and time-to-event data.

Maintained by Dimitris Rizopoulos. Last updated 3 years ago.

8.8 match 2 stars 4.93 score 112 scripts 1 dependents

christophe314

longitudinalData:Longitudinal Data

Tools for longitudinal data and joint longitudinal data (used by packages kml and kml3d).

Maintained by Christophe Genolini. Last updated 5 months ago.

4.7 match 1 stars 3.55 score 65 scripts 11 dependents

aallignol

lgtdl:A Set of Methods for Longitudinal Data Objects

A very simple implementation of a class for longitudinal data.

Maintained by Arthur Allignol. Last updated 7 years ago.

9.7 match 1.48 score 5 scripts 1 dependents

cran

qrcm:Quantile Regression Coefficients Modeling

Parametric modeling of quantile regression coefficient functions.

Maintained by Paolo Frumento. Last updated 1 years ago.

6.9 match 1.78 score 2 dependents