Showing 125 of total 125 results (show query)

bioc

annotate:Annotation for microarrays

Using R enviroments for annotation.

Maintained by Bioconductor Package Maintainer. Last updated 5 months ago.

annotationpathwaysgo

6.7 match 11.41 score 812 scripts 243 dependents

patzaw

BED:Biological Entity Dictionary (BED)

An interface for the 'Neo4j' database providing mapping between different identifiers of biological entities. This Biological Entity Dictionary (BED) has been developed to address three main challenges. The first one is related to the completeness of identifier mappings. Indeed, direct mapping information provided by the different systems are not always complete and can be enriched by mappings provided by other resources. More interestingly, direct mappings not identified by any of these resources can be indirectly inferred by using mappings to a third reference. For example, many human Ensembl gene ID are not directly mapped to any Entrez gene ID but such mappings can be inferred using respective mappings to HGNC ID. The second challenge is related to the mapping of deprecated identifiers. Indeed, entity identifiers can change from one resource release to another. The identifier history is provided by some resources, such as Ensembl or the NCBI, but it is generally not used by mapping tools. The third challenge is related to the automation of the mapping process according to the relationships between the biological entities of interest. Indeed, mapping between gene and protein ID scopes should not be done the same way than between two scopes regarding gene ID. Also, converting identifiers from different organisms should be possible using gene orthologs information. The method has been published by Godard and van Eyll (2018) <doi:10.12688/f1000research.13925.3>.

Maintained by Patrice Godard. Last updated 3 months ago.

8.9 match 8 stars 6.85 score 25 scripts

lukejharmon

geiger:Analysis of Evolutionary Diversification

Methods for fitting macroevolutionary models to phylogenetic trees Pennell (2014) <doi:10.1093/bioinformatics/btu181>.

Maintained by Luke Harmon. Last updated 2 years ago.

openblascpp

2.3 match 1 stars 7.84 score 2.3k scripts 28 dependents

pieterprovoost

ghettoblaster:NCBI BLAST web client

NCBI BLAST web client.

Maintained by Pieter Provoost. Last updated 1 years ago.

7.5 match 1.70 score

shixiangwang

rsra:Query and Download SRA Files from NCBI

Query and download SRA files from NCBI with 'wget'.

Maintained by Shixiang Wang. Last updated 3 years ago.

5.4 match 2 stars 2.00 score

cran

pubmed.mineR:Text Mining of PubMed Abstracts

Text mining of PubMed Abstracts (text and XML) from <https://pubmed.ncbi.nlm.nih.gov/>.

Maintained by S. Ramachandran. Last updated 6 months ago.

4.3 match 6 stars 2.08 score

lefeup

BoSSA:A Bunch of Structure and Sequence Analysis

Reads and plots phylogenetic placements.

Maintained by Pierre Lefeuvre. Last updated 4 years ago.

1.2 match 3.35 score 15 scripts

bioc

ViSEAGO:ViSEAGO: a Bioconductor package for clustering biological functions using Gene Ontology and semantic similarity

The main objective of ViSEAGO package is to carry out a data mining of biological functions and establish links between genes involved in the study. We developed ViSEAGO in R to facilitate functional Gene Ontology (GO) analysis of complex experimental design with multiple comparisons of interest. It allows to study large-scale datasets together and visualize GO profiles to capture biological knowledge. The acronym stands for three major concepts of the analysis: Visualization, Semantic similarity and Enrichment Analysis of Gene Ontology. It provides access to the last current GO annotations, which are retrieved from one of NCBI EntrezGene, Ensembl or Uniprot databases for several species. Using available R packages and novel developments, ViSEAGO extends classical functional GO analysis to focus on functional coherence by aggregating closely related biological themes while studying multiple datasets at once. It provides both a synthetic and detailed view using interactive functionalities respecting the GO graph structure and ensuring functional coherence supplied by semantic similarity. ViSEAGO has been successfully applied on several datasets from different species with a variety of biological questions. Results can be easily shared between bioinformaticians and biologists, enhancing reporting capabilities while maintaining reproducibility.

Maintained by Aurelien Brionne. Last updated 2 months ago.

softwareannotationgogenesetenrichmentmultiplecomparisonclusteringvisualization

0.5 match 6.64 score 22 scripts

hugheylab

seeker:Simplified Fetching and Processing of Microarray and RNA-Seq Data

Wrapper around various existing tools and command-line interfaces, providing a standard interface, simple parallelization, and detailed logging. For microarray data, maps probe sets to standard gene IDs, building on 'GEOquery' Davis and Meltzer (2007) <doi:10.1093/bioinformatics/btm254>, 'ArrayExpress' Kauffmann et al. (2009) <doi:10.1093/bioinformatics/btp354>, Robust multi-array average 'RMA' Irizarry et al. (2003) <doi:10.1093/biostatistics/4.2.249>, and 'BrainArray' Dai et al. (2005) <doi:10.1093/nar/gni179>. For RNA-seq data, fetches metadata and raw reads from National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA), performs standard adapter and quality trimming using 'TrimGalore' Krueger <https://github.com/FelixKrueger/TrimGalore>, performs quality control checks using 'FastQC' Andrews <https://github.com/s-andrews/FastQC>, quantifies transcript abundances using 'salmon' Patro et al. (2017) <doi:10.1038/nmeth.4197> and potentially 'refgenie' Stolarczyk et al. (2020) <doi:10.1093/gigascience/giz149>, aggregates the results using 'MultiQC' Ewels et al. (2016) <doi:10.1093/bioinformatics/btw354>, maps transcripts to genes using 'biomaRt' Durinkck et al. (2009) <doi:10.1038/nprot.2009.97>, and summarizes transcript-level quantifications for gene-level analyses using 'tximport' Soneson et al. (2015) <doi:10.12688/f1000research.7563.2>.

Maintained by Jake Hughey. Last updated 7 months ago.

0.5 match 3 stars 4.78 score 1 scripts

bioc

genomes:Genome sequencing project metadata

Download genome and assembly reports from NCBI

Maintained by Chris Stubben. Last updated 5 months ago.

annotationgenetics

0.6 match 3.48 score 15 scripts

eastman

ncbit:Retrieve and Build NBCI Taxonomic Data

Makes NCBI taxonomic data locally available and searchable as an R object.

Maintained by Jon Eastman. Last updated 3 years ago.

0.6 match 3.36 score 2 scripts 29 dependents

evastrucken

lactcurves:Lactation Curve Parameter Estimation

AllCurves() runs multiple lactation curve models and extracts selection criteria for each model. This package summarises the most common lactation curve models from the last century and provides a tool for researchers to quickly decide on which model fits their data best to proceed with their analysis. Start parameters were optimized based on a dataset with 1.7 million Holstein-Friesian cows. If convergence fails, the start parameters need to be manually adjusted. The models included in the package are taken from: (1) Michaelis-Menten: Michaelis, L. and M.L. Menten (1913). <www.plantphys.info/plant_physiology/copyright/MichaelisMentenTranslation2.pdf> (1a) Michaelis-Menten (Rook): Rook, A.J., J. France, and M.S. Dhanoa (1993). <doi:10.1017/S002185960007684X> (1b) Michaelis-Menten + exponential (Rook): Rook, A.J., J. France, and M.S. Dhanoa (1993). <doi:10.1017/S002185960007684X> (2) Brody (1923): Brody, S., A.C. Ragsdale, and C.W. Turner (1923). <doi:10.1085/jgp.5.6.777> (3) Brody (1924): Brody, S., C.W. Tuner, and A.C. Ragsdale (1924). <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140670/> (4) Schumacher: Schumacher, F.X. (1939) in Thornley, J.H.M. and J. France (2007). <https://books.google.com.au/books/about/Mathematical_Models_in_Agriculture.html?id=rlwBCRSHobcC&redir_esc=y> (4a) Schumacher (Lopez et al. 2015): Lopez, S. J. France, N.E. Odongo, R.A. McBride, E. Kebreab, O. AlZahal, B.W. McBride, and J. Dijkstra (2015). <doi:10.3168/jds.2014-8132> (5) Parabolic exponential (Adediran): Adediran, S.A., D.A. Ratkowsky, D.J. Donaghy, and A.E.O. Malau-Aduli (2012). <doi:10.3168/jds.2011-4663> (6) Wood: Wood, P.D.P. (1967). <doi:10.1038/216164a0> (6a) Wood reparameterized (Dhanoa): Dhanoa, M.S. (1981). <doi:10.1017/S0003356100027276> (6b) Wood non-linear (Cappio-Borlino): Cappio-Borlino, A., G. Pulina, and G. Rossi (1995). <doi:10.1016/0921-4488(95)00713-U> (7) Quadratic Polynomial (Dave): Dave, B.K. (1971) in Adediran, S.A., D.A. Ratkowsky, D.J. Donaghy, and A.E.O. Malau-Aduli (2012). <doi:10.3168/jds.2011-4663> (8) Cobby and Le Du (Vargas): Vargas, B., W.J. Koops, M. Herrero, and J.A.M Van Arendonk (2000). <doi:10.3168/jds.S0022-0302(00)75005-3> (9) Papajcsik and Bodero 1: Papajcsik, I.A. and J. Bodero (1988). <doi:10.1017/S0003356100003275> (10) Papajcsik and Bodero 2: Papajcsik, I.A. and J. Bodero (1988). <doi:10.1017/S0003356100003275> (11) Papajcsik and Bodero 3: Papajcsik, I.A. and J. Bodero (1988). <doi:10.1017/S0003356100003275> (12) Papajcsik and Bodero 4: Papajcsik, I.A. and J. Bodero (1988). <doi:10.1017/S0003356100003275> (13) Papajcsik and Bodero 6: Papajcsik, I.A. and J. Bodero (1988). <doi:10.1017/S0003356100003275> (14) Mixed log model 1 (Guo and Swalve): Guo, Z. and H.H. Swalve (1995). <https://journal.interbull.org/index.php/ib/issue/view/11> (15) Mixed log model 3 (Guo and Swalve): Guo, Z. and H.H. Swalve (1995). <https://journal.interbull.org/index.php/ib/issue/view/11> (16) Log-quadratic (Adediran et al. 2012): Adediran, S.A., D.A. Ratkowsky, D.J. Donaghy, and A.E.O. Malau-Aduli (2012). <doi:10.3168/jds.2011-4663> (17) Wilmink: J.B.M. Wilmink (1987). <doi:10.1016/0301-6226(87)90003-0> (17a) modified Wilmink (Jakobsen): Jakobsen J.H., P. Madsen, J. Jensen, J. Pedersen, L.G. Christensen, and D.A. Sorensen (2002). <doi:10.3168/jds.S0022-0302(02)74231-8> (17b) modified Wilmink (Laurenson & Strucken): Strucken E.M., Brockmann G.A., and Y.C.S.M. Laurenson (2019). <http://www.aaabg.org/aaabghome/AAABG23papers/35Strucken23139.pdf> (18) Bicompartemental (Ferguson and Boston 1993): Ferguson, J.D., and R. Boston (1993) in Adediran, S.A., D.A. Ratkowsky, D.J. Donaghy, and A.E.O. Malau-Aduli (2012). <doi:10.3168/jds.2011-4663> (19) Dijkstra: Dijkstra, J., J. France, M.S. Dhanoa, J.A. Maas, M.D. Hanigan, A.J. Rook, and D.E. Beever (1997). <doi:10.3168/jds.S0022-0302(97)76185-X> (20) Morant and Gnanasakthy (Pollott et al 2000): Pollott, G.E. and E. Gootwine (2000). <doi:10.1017/S1357729800055028> (21) Morant and Gnanasakthy (Vargas et al 2000): Vargas, B., W.J. Koops, M. Herrero, and J.A.M Van Arendonk (2000). <doi:10.3168/jds.S0022-0302(00)75005-3> (22) Morant and Gnanasakthy (Adediran et al. 2012): Adediran, S.A., D.A. Ratkowsky, D.J. Donaghy, and A.E.O. Malau-Aduli (2012). <doi:10.3168/jds.2011-4663> (23) Khandekar (Guo and Swalve): Guo, Z. and H.H. Swalve (1995). <https://journal.interbull.org/index.php/ib/issue/view/11> (24) Ali and Schaeffer: Ali, T.E. and L.R. Schaeffer (1987). <https://www.nrcresearchpress.com/doi/pdf/10.4141/cjas87-067> (25) Fractional Polynomial (Elvira et al. 2013): Elvira, L., F. Hernandez, P. Cuesta, S. Cano, J.-V. Gonzalez-Martin, and S. Astiz (2012). <doi:10.1017/S175173111200239X> (26) Pollott multiplicative (Elvira): Elvira, L., F. Hernandez, P. Cuesta, S. Cano, J.-V. Gonzalez-Martin, and S. Astiz (2012). <doi:10.1017/S175173111200239X> (27) Pollott modified: Adediran, S.A., D.A. Ratkowsky, D.J. Donaghy, and A.E.O. Malau-Aduli (2012). <doi:10.3168/jds.2011-4663> (28) Monophasic Grossman: Grossman, M. and W.J. Koops (1988). <doi:10.3168/jds.S0022-0302(88)79723-4> (29) Monophasic Power Transformed (Grossman 1999): Grossman, M., S.M. Hartz, and W.J. Koops (1999). <doi:10.3168/jds.S0022-0302(99)75464-0> (30) Diphasic (Grossman 1999): Grossman, M., S.M. Hartz, and W.J. Koops (1999). <doi:10.3168/jds.S0022-0302(99)75464-0> (31) Diphasic Power Transformed (Grossman 1999): Grossman, M., S.M. Hartz, and W.J. Koops (1999). <doi:10.3168/jds.S0022-0302(99)75464-0> (32) Legendre Polynomial (3th order): Jakobsen J.H., P. Madsen, J. Jensen, J. Pedersen, L.G. Christensen, and D.A. Sorensen (2002). <doi:10.3168/jds.S0022-0302(02)74231-8> (33) Legendre Polynomial (4th order): Jakobsen J.H., P. Madsen, J. Jensen, J. Pedersen, L.G. Christensen, and D.A. Sorensen (2002). <doi:10.3168/jds.S0022-0302(02)74231-8> (34) Legendre + Wilmink (Lidauer): Lidauer, M. and E.A. Mantysaari (1999). <https://journal.interbull.org/index.php/ib/article/view/417> (35) Natural Cubic Spline (3 percentiles): White, I.M.S., R. Thompson, and S. Brotherstone (1999). <doi:10.3168/jds.S0022-0302(99)75277-X> (36) Natural Cubic Spline (4 percentiles): White, I.M.S., R. Thompson, and S. Brotherstone (1999). <doi:10.3168/jds.S0022-0302(99)75277-X> (37) Natural Cubic Spline (5 percentiles): White, I.M.S., R. Thompson, and S. Brotherstone (1999) <doi:10.3168/jds.S0022-0302(99)75277-X> (38) Natural Cubic Spline (defined knots according to Harrell 2001): Jr. Harrell, F.E. (2001). <https://link.springer.com/book/10.1007/978-3-319-19425-7> The selection criteria measure the goodness of fit of the model and include: Residual standard error (RSE), R-square (R2), log likelihood, Akaike information criterion (AIC), Akaike information criterion corrected (AICC), Bayesian Information Criterion (BIC), Durbin Watson coefficient (DW). The following model parameters are included: Residual sum of squares (RSS), Residual standard deviation (RSD), F-value (F) based on F-ratio test.

Maintained by Eva M. Strucken. Last updated 4 years ago.

0.5 match 2.70 score 1 scripts

cran

GenomicSig:Computation of Genomic Signatures

Genomic signatures represent unique features within a species' DNA, enabling the differentiation of species and offering broad applications across various fields. This package provides essential tools for calculating these specific signatures, streamlining the process for researchers and offering a comprehensive and time-saving solution for genomic analysis.The amino acid contents are identified based on the work published by Sandberg et al. (2003) <doi:10.1016/s0378-1119(03)00581-x> and Xiao et al. (2015) <doi:10.1093/bioinformatics/btv042>. The Average Mutual Information Profiles (AMIP) values are calculated based on the work of Bauer et al. (2008) <doi:10.1186/1471-2105-9-48>. The Chaos Game Representation (CGR) plot visualization was done based on the work of Deschavanne et al. (1999) <doi:10.1093/oxfordjournals.molbev.a026048> and Jeffrey et al. (1990) <doi:10.1093/nar/18.8.2163>. The GC content is calculated based on the work published by Nakabachi et al. (2006) <doi:10.1126/science.1134196> and Barbu et al. (1956) <https://pubmed.ncbi.nlm.nih.gov/13363015>. The Oligonucleotide Frequency Derived Error Gradient (OFDEG) values are computed based on the work published by Saeed et al. (2009) <doi:10.1186/1471-2164-10-S3-S10>. The Relative Synonymous Codon Usage (RSCU) values are calculated based on the work published by Elek (2018) <https://urn.nsk.hr/urn:nbn:hr:217:686131>.

Maintained by Anu Sharma. Last updated 6 months ago.

0.5 match 1.00 score

cran

fence:Using Fence Methods for Model Selection

This method is a new class of model selection strategies, for mixed model selection, which includes linear and generalized linear mixed models. The idea involves a procedure to isolate a subgroup of what are known as correct models (of which the optimal model is a member). This is accomplished by constructing a statistical fence, or barrier, to carefully eliminate incorrect models. Once the fence is constructed, the optimal model is selected from among those within the fence according to a criterion which can be made flexible. References: 1. Jiang J., Rao J.S., Gu Z., Nguyen T. (2008), Fence Methods for Mixed Model Selection. The Annals of Statistics, 36(4): 1669-1692. <DOI:10.1214/07-AOS517> <https://projecteuclid.org/euclid.aos/1216237296>. 2. Jiang J., Nguyen T., Rao J.S. (2009), A Simplified Adaptive Fence Procedure. Statistics and Probability Letters, 79, 625-629. <DOI:10.1016/j.spl.2008.10.014> <https://www.researchgate.net/publication/23991417_A_simplified_adaptive_fence_procedure> 3. Jiang J., Nguyen T., Rao J.S. (2010), Fence Method for Nonparametric Small Area Estimation. Survey Methodology, 36(1), 3-11. <http://publications.gc.ca/collections/collection_2010/statcan/12-001-X/12-001-x2010001-eng.pdf>. 4. Jiming Jiang, Thuan Nguyen and J. Sunil Rao (2011), Invisible fence methods and the identification of differentially expressed gene sets. Statistics and Its Interface, Volume 4, 403-415. <http://www.intlpress.com/site/pub/files/_fulltext/journals/sii/2011/0004/0003/SII-2011-0004-0003-a014.pdf>. 5. Thuan Nguyen & Jiming Jiang (2012), Restricted fence method for covariate selection in longitudinal data analysis. Biostatistics, 13(2), 303-314. <DOI:10.1093/biostatistics/kxr046> <https://academic.oup.com/biostatistics/article/13/2/303/263903/Restricted-fence-method-for-covariate-selection-in>. 6. Thuan Nguyen, Jie Peng, Jiming Jiang (2014), Fence Methods for Backcross Experiments. Statistical Computation and Simulation, 84(3), 644-662. <DOI:10.1080/00949655.2012.721885> <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891925/>. 7. Jiang, J. (2014), The fence methods, in Advances in Statistics, Hindawi Publishing Corp., Cairo. <DOI:10.1155/2014/830821>. 8. Jiming Jiang and Thuan Nguyen (2015), The Fence Methods, World Scientific, Singapore. <https://www.abebooks.com/9789814596060/Fence-Methods-Jiming-Jiang-981459606X/plp>.

Maintained by Thuan Nguyen. Last updated 8 years ago.

0.5 match 1.00 score