Showing 200 of total 2063 results (show query)

cran

nlme:Linear and Nonlinear Mixed Effects Models

Fit and compare Gaussian linear and nonlinear mixed-effects models.

Maintained by R Core Team. Last updated 2 months ago.

fortran

27.0 match 6 stars 13.00 score 13k scripts 8.7k dependents

spatstat

spatstat.model:Parametric Statistical Modelling and Inference for the 'spatstat' Family

Functionality for parametric statistical modelling and inference for spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Supports parametric modelling, formal statistical inference, and model validation. Parametric models include Poisson point processes, Cox point processes, Neyman-Scott cluster processes, Gibbs point processes and determinantal point processes. Models can be fitted to data using maximum likelihood, maximum pseudolikelihood, maximum composite likelihood and the method of minimum contrast. Fitted models can be simulated and predicted. Formal inference includes hypothesis tests (quadrat counting tests, Cressie-Read tests, Clark-Evans test, Berman test, Diggle-Cressie-Loosmore-Ford test, scan test, studentised permutation test, segregation test, ANOVA tests of fitted models, adjusted composite likelihood ratio test, envelope tests, Dao-Genton test, balanced independent two-stage test), confidence intervals for parameters, and prediction intervals for point counts. Model validation techniques include leverage, influence, partial residuals, added variable plots, diagnostic plots, pseudoscore residual plots, model compensators and Q-Q plots.

Maintained by Adrian Baddeley. Last updated 8 days ago.

analysis-of-variancecluster-processconfidence-intervalscox-processdeterminantal-point-processesgibbs-processinfluenceleveragemodel-diagnosticsneyman-scottparameter-estimationpoisson-processspatial-analysisspatial-modellingspatial-point-processesstatistical-inference

19.5 match 5 stars 9.09 score 6 scripts 46 dependents

yayayaoyaoyao

RARtrials:Response-Adaptive Randomization in Clinical Trials

Some response-adaptive randomization methods commonly found in literature are included in this package. These methods include the randomized play-the-winner rule for binary endpoint (Wei and Durham (1978) <doi:10.2307/2286290>), the doubly adaptive biased coin design with minimal variance strategy for binary endpoint (Atkinson and Biswas (2013) <doi:10.1201/b16101>, Rosenberger and Lachin (2015) <doi:10.1002/9781118742112>) and maximal power strategy targeting Neyman allocation for binary endpoint (Tymofyeyev, Rosenberger, and Hu (2007) <doi:10.1198/016214506000000906>) and RSIHR allocation with each letter representing the first character of the names of the individuals who first proposed this rule (Youngsook and Hu (2010) <doi:10.1198/sbr.2009.0056>, Bello and Sabo (2016) <doi:10.1080/00949655.2015.1114116>), A-optimal Allocation for continuous endpoint (Sverdlov and Rosenberger (2013) <doi:10.1080/15598608.2013.783726>), Aa-optimal Allocation for continuous endpoint (Sverdlov and Rosenberger (2013) <doi:10.1080/15598608.2013.783726>), generalized RSIHR allocation for continuous endpoint (Atkinson and Biswas (2013) <doi:10.1201/b16101>), Bayesian response-adaptive randomization with a control group using the Thall \& Wathen method for binary and continuous endpoints (Thall and Wathen (2007) <doi:10.1016/j.ejca.2007.01.006>) and the forward-looking Gittins index rule for binary and continuous endpoints (Villar, Wason, and Bowden (2015) <doi:10.1111/biom.12337>, Williamson and Villar (2019) <doi:10.1111/biom.13119>).

Maintained by Chuyao Xu. Last updated 2 months ago.

33.3 match 4.65 score

alanarnholt

BSDA:Basic Statistics and Data Analysis

Data sets for book "Basic Statistics and Data Analysis" by Larry J. Kitchens.

Maintained by Alan T. Arnholt. Last updated 2 years ago.

14.7 match 7 stars 9.11 score 1.3k scripts 6 dependents

pettermostad

lestat:A Package for Learning Statistics

Some simple objects and functions to do statistics using linear models and a Bayesian framework.

Maintained by Petter Mostad. Last updated 7 years ago.

50.3 match 2.28 score 64 scripts 1 dependents

cran

FuzzySTs:Fuzzy Statistical Tools

The main goal of this package is to present various fuzzy statistical tools. It intends to provide an implementation of the theoretical and empirical approaches presented in the book entitled "The signed distance measure in fuzzy statistical analysis. Some theoretical, empirical and programming advances" <doi: 10.1007/978-3-030-76916-1>. For the theoretical approaches, see Berkachy R. and Donze L. (2019) <doi:10.1007/978-3-030-03368-2_1>. For the empirical approaches, see Berkachy R. and Donze L. (2016) <ISBN: 978-989-758-201-1>). Important (non-exhaustive) implementation highlights of this package are as follows: (1) a numerical procedure to estimate the fuzzy difference and the fuzzy square. (2) two numerical methods of fuzzification. (3) a function performing different possibilities of distances, including the signed distance and the generalized signed distance for instance with all its properties. (4) numerical estimations of fuzzy statistical measures such as the variance, the moment, etc. (5) two methods of estimation of the bootstrap distribution of the likelihood ratio in the fuzzy context. (6) an estimation of a fuzzy confidence interval by the likelihood ratio method. (7) testing fuzzy hypotheses and/or fuzzy data by fuzzy confidence intervals in the Kwakernaak - Kruse and Meyer sense. (8) a general method to estimate the fuzzy p-value with fuzzy hypotheses and/or fuzzy data. (9) a method of estimation of global and individual evaluations of linguistic questionnaires. (10) numerical estimations of multi-ways analysis of variance models in the fuzzy context. The unbalance in the considered designs are also foreseen.

Maintained by Redina Berkachy. Last updated 8 months ago.

32.4 match 3.40 score

bsvars

bsvars:Bayesian Estimation of Structural Vector Autoregressive Models

Provides fast and efficient procedures for Bayesian analysis of Structural Vector Autoregressions. This package estimates a wide range of models, including homo-, heteroskedastic, and non-normal specifications. Structural models can be identified by adjustable exclusion restrictions, time-varying volatility, or non-normality. They all include a flexible three-level equation-specific local-global hierarchical prior distribution for the estimated level of shrinkage for autoregressive and structural parameters. Additionally, the package facilitates predictive and structural analyses such as impulse responses, forecast error variance and historical decompositions, forecasting, verification of heteroskedasticity, non-normality, and hypotheses on autoregressive parameters, as well as analyses of structural shocks, volatilities, and fitted values. Beautiful plots, informative summary functions, and extensive documentation including the vignette by Woźniak (2024) <doi:10.48550/arXiv.2410.15090> complement all this. The implemented techniques align closely with those presented in Lütkepohl, Shang, Uzeda, & Woźniak (2024) <doi:10.48550/arXiv.2404.11057>, Lütkepohl & Woźniak (2020) <doi:10.1016/j.jedc.2020.103862>, and Song & Woźniak (2021) <doi:10.1093/acrefore/9780190625979.013.174>. The 'bsvars' package is aligned regarding objects, workflows, and code structure with the R package 'bsvarSIGNs' by Wang & Woźniak (2024) <doi:10.32614/CRAN.package.bsvarSIGNs>, and they constitute an integrated toolset.

Maintained by Tomasz Woźniak. Last updated 1 months ago.

bayesian-inferenceeconometricsvector-autoregressionopenblascppopenmp

14.3 match 46 stars 7.67 score 32 scripts 1 dependents

wasquith

lmomco:L-Moments, Censored L-Moments, Trimmed L-Moments, L-Comoments, and Many Distributions

Extensive functions for Lmoments (LMs) and probability-weighted moments (PWMs), distribution parameter estimation, LMs for distributions, LM ratio diagrams, multivariate Lcomoments, and asymmetric (asy) trimmed LMs (TLMs). Maximum likelihood and maximum product spacings estimation are available. Right-tail and left-tail LM censoring by threshold or indicator variable are available. LMs of residual (resid) and reversed (rev) residual life are implemented along with 13 quantile operators for reliability analyses. Exact analytical bootstrap estimates of order statistics, LMs, and LM var-covars are available. Harri-Coble Tau34-squared Normality Test is available. Distributions with L, TL, and added (+) support for right-tail censoring (RC) encompass: Asy Exponential (Exp) Power [L], Asy Triangular [L], Cauchy [TL], Eta-Mu [L], Exp. [L], Gamma [L], Generalized (Gen) Exp Poisson [L], Gen Extreme Value [L], Gen Lambda [L, TL], Gen Logistic [L], Gen Normal [L], Gen Pareto [L+RC, TL], Govindarajulu [L], Gumbel [L], Kappa [L], Kappa-Mu [L], Kumaraswamy [L], Laplace [L], Linear Mean Residual Quantile Function [L], Normal [L], 3p log-Normal [L], Pearson Type III [L], Polynomial Density-Quantile 3 and 4 [L], Rayleigh [L], Rev-Gumbel [L+RC], Rice [L], Singh Maddala [L], Slash [TL], 3p Student t [L], Truncated Exponential [L], Wakeby [L], and Weibull [L].

Maintained by William Asquith. Last updated 1 months ago.

flood-frequency-analysisl-momentsmle-estimationmps-estimationprobability-distributionrainfall-frequency-analysisreliability-analysisrisk-analysissurvival-analysis

11.8 match 2 stars 8.06 score 458 scripts 38 dependents

nepem-ufsc

metan:Multi Environment Trials Analysis

Performs stability analysis of multi-environment trial data using parametric and non-parametric methods. Parametric methods includes Additive Main Effects and Multiplicative Interaction (AMMI) analysis by Gauch (2013) <doi:10.2135/cropsci2013.04.0241>, Ecovalence by Wricke (1965), Genotype plus Genotype-Environment (GGE) biplot analysis by Yan & Kang (2003) <doi:10.1201/9781420040371>, geometric adaptability index by Mohammadi & Amri (2008) <doi:10.1007/s10681-007-9600-6>, joint regression analysis by Eberhart & Russel (1966) <doi:10.2135/cropsci1966.0011183X000600010011x>, genotypic confidence index by Annicchiarico (1992), Murakami & Cruz's (2004) method, power law residuals (POLAR) statistics by Doring et al. (2015) <doi:10.1016/j.fcr.2015.08.005>, scale-adjusted coefficient of variation by Doring & Reckling (2018) <doi:10.1016/j.eja.2018.06.007>, stability variance by Shukla (1972) <doi:10.1038/hdy.1972.87>, weighted average of absolute scores by Olivoto et al. (2019a) <doi:10.2134/agronj2019.03.0220>, and multi-trait stability index by Olivoto et al. (2019b) <doi:10.2134/agronj2019.03.0221>. Non-parametric methods includes superiority index by Lin & Binns (1988) <doi:10.4141/cjps88-018>, nonparametric measures of phenotypic stability by Huehn (1990) <doi:10.1007/BF00024241>, TOP third statistic by Fox et al. (1990) <doi:10.1007/BF00040364>. Functions for computing biometrical analysis such as path analysis, canonical correlation, partial correlation, clustering analysis, and tools for inspecting, manipulating, summarizing and plotting typical multi-environment trial data are also provided.

Maintained by Tiago Olivoto. Last updated 9 days ago.

9.3 match 2 stars 9.48 score 1.3k scripts 2 dependents

cran

circular:Circular Statistics

Circular Statistics, from "Topics in circular Statistics" (2001) S. Rao Jammalamadaka and A. SenGupta, World Scientific.

Maintained by Eduardo García-Portugués. Last updated 7 months ago.

fortran

10.9 match 7 stars 7.76 score 1.1k scripts 40 dependents

bioc

mixOmics:Omics Data Integration Project

Multivariate methods are well suited to large omics data sets where the number of variables (e.g. genes, proteins, metabolites) is much larger than the number of samples (patients, cells, mice). They have the appealing properties of reducing the dimension of the data by using instrumental variables (components), which are defined as combinations of all variables. Those components are then used to produce useful graphical outputs that enable better understanding of the relationships and correlation structures between the different data sets that are integrated. mixOmics offers a wide range of multivariate methods for the exploration and integration of biological datasets with a particular focus on variable selection. The package proposes several sparse multivariate models we have developed to identify the key variables that are highly correlated, and/or explain the biological outcome of interest. The data that can be analysed with mixOmics may come from high throughput sequencing technologies, such as omics data (transcriptomics, metabolomics, proteomics, metagenomics etc) but also beyond the realm of omics (e.g. spectral imaging). The methods implemented in mixOmics can also handle missing values without having to delete entire rows with missing data. A non exhaustive list of methods include variants of generalised Canonical Correlation Analysis, sparse Partial Least Squares and sparse Discriminant Analysis. Recently we implemented integrative methods to combine multiple data sets: N-integration with variants of Generalised Canonical Correlation Analysis and P-integration with variants of multi-group Partial Least Squares.

Maintained by Eva Hamrud. Last updated 4 days ago.

immunooncologymicroarraysequencingmetabolomicsmetagenomicsproteomicsgenepredictionmultiplecomparisonclassificationregressionbioconductorgenomicsgenomics-datagenomics-visualizationmultivariate-analysismultivariate-statisticsomicsr-pkgr-project

5.3 match 182 stars 13.71 score 1.3k scripts 22 dependents

dpc10ster

RJafroc:Artificial Intelligence Systems and Observer Performance

Analyzing the performance of artificial intelligence (AI) systems/algorithms characterized by a 'search-and-report' strategy. Historically observer performance has dealt with measuring radiologists' performances in search tasks, e.g., searching for lesions in medical images and reporting them, but the implicit location information has been ignored. The implemented methods apply to analyzing the absolute and relative performances of AI systems, comparing AI performance to a group of human readers or optimizing the reporting threshold of an AI system. In addition to performing historical receiver operating receiver operating characteristic (ROC) analysis (localization information ignored), the software also performs free-response receiver operating characteristic (FROC) analysis, where lesion localization information is used. A book using the software has been published: Chakraborty DP: Observer Performance Methods for Diagnostic Imaging - Foundations, Modeling, and Applications with R-Based Examples, Taylor-Francis LLC; 2017: <https://www.routledge.com/Observer-Performance-Methods-for-Diagnostic-Imaging-Foundations-Modeling/Chakraborty/p/book/9781482214840>. Online updates to this book, which use the software, are at <https://dpc10ster.github.io/RJafrocQuickStart/>, <https://dpc10ster.github.io/RJafrocRocBook/> and at <https://dpc10ster.github.io/RJafrocFrocBook/>. Supported data collection paradigms are the ROC, FROC and the location ROC (LROC). ROC data consists of single ratings per images, where a rating is the perceived confidence level that the image is that of a diseased patient. An ROC curve is a plot of true positive fraction vs. false positive fraction. FROC data consists of a variable number (zero or more) of mark-rating pairs per image, where a mark is the location of a reported suspicious region and the rating is the confidence level that it is a real lesion. LROC data consists of a rating and a location of the most suspicious region, for every image. Four models of observer performance, and curve-fitting software, are implemented: the binormal model (BM), the contaminated binormal model (CBM), the correlated contaminated binormal model (CORCBM), and the radiological search model (RSM). Unlike the binormal model, CBM, CORCBM and RSM predict 'proper' ROC curves that do not inappropriately cross the chance diagonal. Additionally, RSM parameters are related to search performance (not measured in conventional ROC analysis) and classification performance. Search performance refers to finding lesions, i.e., true positives, while simultaneously not finding false positive locations. Classification performance measures the ability to distinguish between true and false positive locations. Knowing these separate performances allows principled optimization of reader or AI system performance. This package supersedes Windows JAFROC (jackknife alternative FROC) software V4.2.1, <https://github.com/dpc10ster/WindowsJafroc>. Package functions are organized as follows. Data file related function names are preceded by 'Df', curve fitting functions by 'Fit', included data sets by 'dataset', plotting functions by 'Plot', significance testing functions by 'St', sample size related functions by 'Ss', data simulation functions by 'Simulate' and utility functions by 'Util'. Implemented are figures of merit (FOMs) for quantifying performance and functions for visualizing empirical or fitted operating characteristics: e.g., ROC, FROC, alternative FROC (AFROC) and weighted AFROC (wAFROC) curves. For fully crossed study designs significance testing of reader-averaged FOM differences between modalities is implemented via either Dorfman-Berbaum-Metz or the Obuchowski-Rockette methods. Also implemented is single modality analysis, which allows comparison of performance of a group of radiologists to a specified value, or comparison of AI to a group of radiologists interpreting the same cases. Crossed-modality analysis is implemented wherein there are two crossed modality factors and the aim is to determined performance in each modality factor averaged over all levels of the second factor. Sample size estimation tools are provided for ROC and FROC studies; these use estimates of the relevant variances from a pilot study to predict required numbers of readers and cases in a pivotal study to achieve the desired power. Utility and data file manipulation functions allow data to be read in any of the currently used input formats, including Excel, and the results of the analysis can be viewed in text or Excel output files. The methods are illustrated with several included datasets from the author's collaborations. This update includes improvements to the code, some as a result of user-reported bugs and new feature requests, and others discovered during ongoing testing and code simplification.

Maintained by Dev Chakraborty. Last updated 5 months ago.

ai-optimizationartificial-intelligence-algorithmscomputer-aided-diagnosisfroc-analysisroc-analysistarget-classificationtarget-localizationcpp

11.2 match 19 stars 5.69 score 65 scripts

sinnweja

vcpen:Penalized Variance Components Analysis

Method to perform penalized variance component analysis.

Maintained by Jason Sinnwell. Last updated 3 years ago.

openblascpp

22.6 match 2.70 score 1 scripts

bioc

genefilter:genefilter: methods for filtering genes from high-throughput experiments

Some basic functions for filtering genes.

Maintained by Bioconductor Package Maintainer. Last updated 5 months ago.

microarrayfortrancpp

5.4 match 11.10 score 2.4k scripts 142 dependents

heliosdrm

pwr:Basic Functions for Power Analysis

Power analysis functions along the lines of Cohen (1988).

Maintained by Helios De Rosario. Last updated 1 years ago.

4.5 match 105 stars 12.97 score 2.6k scripts 28 dependents

r-forge

car:Companion to Applied Regression

Functions to Accompany J. Fox and S. Weisberg, An R Companion to Applied Regression, Third Edition, Sage, 2019.

Maintained by John Fox. Last updated 5 months ago.

3.8 match 15.29 score 43k scripts 901 dependents

e-sensing

sits:Satellite Image Time Series Analysis for Earth Observation Data Cubes

An end-to-end toolkit for land use and land cover classification using big Earth observation data, based on machine learning methods applied to satellite image data cubes, as described in Simoes et al (2021) <doi:10.3390/rs13132428>. Builds regular data cubes from collections in AWS, Microsoft Planetary Computer, Brazil Data Cube, Copernicus Data Space Environment (CDSE), Digital Earth Africa, Digital Earth Australia, NASA HLS using the Spatio-temporal Asset Catalog (STAC) protocol (<https://stacspec.org/>) and the 'gdalcubes' R package developed by Appel and Pebesma (2019) <doi:10.3390/data4030092>. Supports visualization methods for images and time series and smoothing filters for dealing with noisy time series. Includes functions for quality assessment of training samples using self-organized maps as presented by Santos et al (2021) <doi:10.1016/j.isprsjprs.2021.04.014>. Includes methods to reduce training samples imbalance proposed by Chawla et al (2002) <doi:10.1613/jair.953>. Provides machine learning methods including support vector machines, random forests, extreme gradient boosting, multi-layer perceptrons, temporal convolutional neural networks proposed by Pelletier et al (2019) <doi:10.3390/rs11050523>, and temporal attention encoders by Garnot and Landrieu (2020) <doi:10.48550/arXiv.2007.00586>. Supports GPU processing of deep learning models using torch <https://torch.mlverse.org/>. Performs efficient classification of big Earth observation data cubes and includes functions for post-classification smoothing based on Bayesian inference as described by Camara et al (2024) <doi:10.3390/rs16234572>, and methods for active learning and uncertainty assessment. Supports region-based time series analysis using package supercells <https://jakubnowosad.com/supercells/>. Enables best practices for estimating area and assessing accuracy of land change as recommended by Olofsson et al (2014) <doi:10.1016/j.rse.2014.02.015>. Minimum recommended requirements: 16 GB RAM and 4 CPU dual-core.

Maintained by Gilberto Camara. Last updated 1 months ago.

big-earth-datacbersearth-observationeo-datacubesgeospatialimage-time-seriesland-cover-classificationlandsatplanetary-computerr-spatialremote-sensingrspatialsatellite-image-time-seriessatellite-imagerysentinel-2stac-apistac-catalogcpp

5.9 match 494 stars 9.50 score 384 scripts

lcrawlab

mvMAPIT:Multivariate Genome Wide Marginal Epistasis Test

Epistasis, commonly defined as the interaction between genetic loci, is known to play an important role in the phenotypic variation of complex traits. As a result, many statistical methods have been developed to identify genetic variants that are involved in epistasis, and nearly all of these approaches carry out this task by focusing on analyzing one trait at a time. Previous studies have shown that jointly modeling multiple phenotypes can often dramatically increase statistical power for association mapping. In this package, we present the 'multivariate MArginal ePIstasis Test' ('mvMAPIT') – a multi-outcome generalization of a recently proposed epistatic detection method which seeks to detect marginal epistasis or the combined pairwise interaction effects between a given variant and all other variants. By searching for marginal epistatic effects, one can identify genetic variants that are involved in epistasis without the need to identify the exact partners with which the variants interact – thus, potentially alleviating much of the statistical and computational burden associated with conventional explicit search based methods. Our proposed 'mvMAPIT' builds upon this strategy by taking advantage of correlation structure between traits to improve the identification of variants involved in epistasis. We formulate 'mvMAPIT' as a multivariate linear mixed model and develop a multi-trait variance component estimation algorithm for efficient parameter inference and P-value computation. Together with reasonable model approximations, our proposed approach is scalable to moderately sized genome-wide association studies. Crawford et al. (2017) <doi:10.1371/journal.pgen.1006869>. Stamp et al. (2023) <doi:10.1093/g3journal/jkad118>.

Maintained by Julian Stamp. Last updated 5 months ago.

cppepistasisepistasis-analysisgwasgwas-toolslinear-mixed-modelsmapitmvmapitvariance-componentsopenblascppopenmp

8.0 match 11 stars 6.90 score 17 scripts 1 dependents

briencj

asremlPlus:Augments 'ASReml-R' in Fitting Mixed Models and Packages Generally in Exploring Prediction Differences

Assists in automating the selection of terms to include in mixed models when 'asreml' is used to fit the models. Procedures are available for choosing models that conform to the hierarchy or marginality principle, for fitting and choosing between two-dimensional spatial models using correlation, natural cubic smoothing spline and P-spline models. A history of the fitting of a sequence of models is kept in a data frame. Also used to compute functions and contrasts of, to investigate differences between and to plot predictions obtained using any model fitting function. The content falls into the following natural groupings: (i) Data, (ii) Model modification functions, (iii) Model selection and description functions, (iv) Model diagnostics and simulation functions, (v) Prediction production and presentation functions, (vi) Response transformation functions, (vii) Object manipulation functions, and (viii) Miscellaneous functions (for further details see 'asremlPlus-package' in help). The 'asreml' package provides a computationally efficient algorithm for fitting a wide range of linear mixed models using Residual Maximum Likelihood. It is a commercial package and a license for it can be purchased from 'VSNi' <https://vsni.co.uk/> as 'asreml-R', who will supply a zip file for local installation/updating (see <https://asreml.kb.vsni.co.uk/>). It is not needed for functions that are methods for 'alldiffs' and 'data.frame' objects. The package 'asremPlus' can also be installed from <http://chris.brien.name/rpackages/>.

Maintained by Chris Brien. Last updated 28 days ago.

asremlmixed-models

5.9 match 19 stars 9.34 score 200 scripts

venelin

PCMBase:Simulation and Likelihood Calculation of Phylogenetic Comparative Models

Phylogenetic comparative methods represent models of continuous trait data associated with the tips of a phylogenetic tree. Examples of such models are Gaussian continuous time branching stochastic processes such as Brownian motion (BM) and Ornstein-Uhlenbeck (OU) processes, which regard the data at the tips of the tree as an observed (final) state of a Markov process starting from an initial state at the root and evolving along the branches of the tree. The PCMBase R package provides a general framework for manipulating such models. This framework consists of an application programming interface for specifying data and model parameters, and efficient algorithms for simulating trait evolution under a model and calculating the likelihood of model parameters for an assumed model and trait data. The package implements a growing collection of models, which currently includes BM, OU, BM/OU with jumps, two-speed OU as well as mixed Gaussian models, in which different types of the above models can be associated with different branches of the tree. The PCMBase package is limited to trait-simulation and likelihood calculation of (mixed) Gaussian phylogenetic models. The PCMFit package provides functionality for inference of these models to tree and trait data. The package web-site <https://venelin.github.io/PCMBase/> provides access to the documentation and other resources.

Maintained by Venelin Mitov. Last updated 10 months ago.

6.9 match 6 stars 7.56 score 85 scripts 3 dependents

diystat

NBPSeq:Negative Binomial Models for RNA-Sequencing Data

Negative Binomial (NB) models for two-group comparisons and regression inferences from RNA-Sequencing Data.

Maintained by Yanming Di. Last updated 11 years ago.

10.4 match 1 stars 4.88 score 17 scripts 3 dependents

hannahcomiskey

mcmsupply:Estimating Public and Private Sector Contraceptive Market Supply Shares

Family Planning programs and initiatives typically use nationally representative surveys to estimate key indicators of a country’s family planning progress. However, in recent years, routinely collected family planning services data (Service Statistics) have been used as a supplementary data source to bridge gaps in the surveys. The use of service statistics comes with the caveat that adjustments need to be made for missing private sector contributions to the contraceptive method supply chain. Evaluating the supply source of modern contraceptives often relies on Demographic Health Surveys (DHS), where many countries do not have recent data beyond 2015/16. Fortunately, in the absence of recent surveys we can rely on statistical model-based estimates and projections to fill the knowledge gap. We present a Bayesian, hierarchical, penalized-spline model with multivariate-normal spline coefficients, to account for across method correlations, to produce country-specific,annual estimates for the proportion of modern contraceptive methods coming from the public and private sectors. This package provides a quick and convenient way for users to access the DHS modern contraceptive supply share data at national and subnational administration levels, estimate, evaluate and plot annual estimates with uncertainty for a sample of low- and middle-income countries. Methods for the estimation of method supply shares at the national level are described in Comiskey, Alkema, Cahill (2022) <arXiv:2212.03844>.

Maintained by Hannah Comiskey. Last updated 12 months ago.

jagscpp

9.5 match 2 stars 5.15 score 20 scripts

davidfirth

qvcalc:Quasi Variances for Factor Effects in Statistical Models

Functions to compute quasi variances and associated measures of approximation error.

Maintained by David Firth. Last updated 2 months ago.

7.2 match 6.63 score 40 scripts 25 dependents

nandy006

smallarea:Fits a Fay Herriot Model

Inference techniques for Fay Herriot Model.

Maintained by Abhishek Nandy. Last updated 8 years ago.

11.3 match 1 stars 4.18 score 9 scripts 1 dependents

tidymodels

infer:Tidy Statistical Inference

The objective of this package is to perform inference using an expressive statistical grammar that coheres with the tidy design framework.

Maintained by Simon Couch. Last updated 6 months ago.

3.0 match 734 stars 15.69 score 3.5k scripts 17 dependents