Showing 200 of total 991 results (show query)

tvganesh

QCSimulator:5 Qubit Quantum Computing Simulator

This package simulates a 5 qubit Quantum Computer.

Maintained by Tinniam V Ganesh. Last updated 9 years ago.

67.5 match 5 stars 4.20 score 64 scripts

bioc

systemPipeR:systemPipeR: Workflow Environment for Data Analysis and Report Generation

systemPipeR is a multipurpose data analysis workflow environment that unifies R with command-line tools. It enables scientists to analyze many types of large- or small-scale data on local or distributed computer systems with a high level of reproducibility, scalability and portability. At its core is a command-line interface (CLI) that adopts the Common Workflow Language (CWL). This design allows users to choose for each analysis step the optimal R or command-line software. It supports both end-to-end and partial execution of workflows with built-in restart functionalities. Efficient management of complex analysis tasks is accomplished by a flexible workflow control container class. Handling of large numbers of input samples and experimental designs is facilitated by consistent sample annotation mechanisms. As a multi-purpose workflow toolkit, systemPipeR enables users to run existing workflows, customize them or design entirely new ones while taking advantage of widely adopted data structures within the Bioconductor ecosystem. Another important core functionality is the generation of reproducible scientific analysis and technical reports. For result interpretation, systemPipeR offers a wide range of plotting functionality, while an associated Shiny App offers many useful functionalities for interactive result exploration. The vignettes linked from this page include (1) a general introduction, (2) a description of technical details, and (3) a collection of workflow templates.

Maintained by Thomas Girke. Last updated 5 months ago.

geneticsinfrastructuredataimportsequencingrnaseqriboseqchipseqmethylseqsnpgeneexpressioncoveragegenesetenrichmentalignmentqualitycontrolimmunooncologyreportwritingworkflowstepworkflowmanagement

24.1 match 53 stars 11.56 score 344 scripts 3 dependents

prioritizr

prioritizr:Systematic Conservation Prioritization in R

Systematic conservation prioritization using mixed integer linear programming (MILP). It provides a flexible interface for building and solving conservation planning problems. Once built, conservation planning problems can be solved using a variety of commercial and open-source exact algorithm solvers. By using exact algorithm solvers, solutions can be generated that are guaranteed to be optimal (or within a pre-specified optimality gap). Furthermore, conservation problems can be constructed to optimize the spatial allocation of different management actions or zones, meaning that conservation practitioners can identify solutions that benefit multiple stakeholders. To solve large-scale or complex conservation planning problems, users should install the Gurobi optimization software (available from <https://www.gurobi.com/>) and the 'gurobi' R package (see Gurobi Installation Guide vignette for details). Users can also install the IBM CPLEX software (<https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer>) and the 'cplexAPI' R package (available at <https://github.com/cran/cplexAPI>). Additionally, the 'rcbc' R package (available at <https://github.com/dirkschumacher/rcbc>) can be used to generate solutions using the CBC optimization software (<https://github.com/coin-or/Cbc>). For further details, see Hanson et al. (2025) <doi:10.1111/cobi.14376>.

Maintained by Richard Schuster. Last updated 10 days ago.

biodiversityconservationconservation-planneroptimizationprioritizationsolverspatialcpp

16.6 match 124 stars 11.82 score 584 scripts 2 dependents

pik-piam

mrremind:MadRat REMIND Input Data Package

The mrremind packages contains data preprocessing for the REMIND model.

Maintained by Lavinia Baumstark. Last updated 2 days ago.

19.8 match 4 stars 6.25 score 15 scripts 1 dependents

afialkowski

SimMultiCorrData:Simulation of Correlated Data with Multiple Variable Types

Generate continuous (normal or non-normal), binary, ordinal, and count (Poisson or Negative Binomial) variables with a specified correlation matrix. It can also produce a single continuous variable. This package can be used to simulate data sets that mimic real-world situations (i.e. clinical or genetic data sets, plasmodes). All variables are generated from standard normal variables with an imposed intermediate correlation matrix. Continuous variables are simulated by specifying mean, variance, skewness, standardized kurtosis, and fifth and sixth standardized cumulants using either Fleishman's third-order (<DOI:10.1007/BF02293811>) or Headrick's fifth-order (<DOI:10.1016/S0167-9473(02)00072-5>) polynomial transformation. Binary and ordinal variables are simulated using a modification of the ordsample() function from 'GenOrd'. Count variables are simulated using the inverse cdf method. There are two simulation pathways which differ primarily according to the calculation of the intermediate correlation matrix. In Correlation Method 1, the intercorrelations involving count variables are determined using a simulation based, logarithmic correlation correction (adapting Yahav and Shmueli's 2012 method, <DOI:10.1002/asmb.901>). In Correlation Method 2, the count variables are treated as ordinal (adapting Barbiero and Ferrari's 2015 modification of GenOrd, <DOI:10.1002/asmb.2072>). There is an optional error loop that corrects the final correlation matrix to be within a user-specified precision value of the target matrix. The package also includes functions to calculate standardized cumulants for theoretical distributions or from real data sets, check if a target correlation matrix is within the possible correlation bounds (given the distributions of the simulated variables), summarize results (numerically or graphically), to verify valid power method pdfs, and to calculate lower standardized kurtosis bounds.

Maintained by Allison Cynthia Fialkowski. Last updated 7 years ago.

13.4 match 12 stars 7.58 score 44 scripts 6 dependents

dpc10ster

RJafroc:Artificial Intelligence Systems and Observer Performance

Analyzing the performance of artificial intelligence (AI) systems/algorithms characterized by a 'search-and-report' strategy. Historically observer performance has dealt with measuring radiologists' performances in search tasks, e.g., searching for lesions in medical images and reporting them, but the implicit location information has been ignored. The implemented methods apply to analyzing the absolute and relative performances of AI systems, comparing AI performance to a group of human readers or optimizing the reporting threshold of an AI system. In addition to performing historical receiver operating receiver operating characteristic (ROC) analysis (localization information ignored), the software also performs free-response receiver operating characteristic (FROC) analysis, where lesion localization information is used. A book using the software has been published: Chakraborty DP: Observer Performance Methods for Diagnostic Imaging - Foundations, Modeling, and Applications with R-Based Examples, Taylor-Francis LLC; 2017: <https://www.routledge.com/Observer-Performance-Methods-for-Diagnostic-Imaging-Foundations-Modeling/Chakraborty/p/book/9781482214840>. Online updates to this book, which use the software, are at <https://dpc10ster.github.io/RJafrocQuickStart/>, <https://dpc10ster.github.io/RJafrocRocBook/> and at <https://dpc10ster.github.io/RJafrocFrocBook/>. Supported data collection paradigms are the ROC, FROC and the location ROC (LROC). ROC data consists of single ratings per images, where a rating is the perceived confidence level that the image is that of a diseased patient. An ROC curve is a plot of true positive fraction vs. false positive fraction. FROC data consists of a variable number (zero or more) of mark-rating pairs per image, where a mark is the location of a reported suspicious region and the rating is the confidence level that it is a real lesion. LROC data consists of a rating and a location of the most suspicious region, for every image. Four models of observer performance, and curve-fitting software, are implemented: the binormal model (BM), the contaminated binormal model (CBM), the correlated contaminated binormal model (CORCBM), and the radiological search model (RSM). Unlike the binormal model, CBM, CORCBM and RSM predict 'proper' ROC curves that do not inappropriately cross the chance diagonal. Additionally, RSM parameters are related to search performance (not measured in conventional ROC analysis) and classification performance. Search performance refers to finding lesions, i.e., true positives, while simultaneously not finding false positive locations. Classification performance measures the ability to distinguish between true and false positive locations. Knowing these separate performances allows principled optimization of reader or AI system performance. This package supersedes Windows JAFROC (jackknife alternative FROC) software V4.2.1, <https://github.com/dpc10ster/WindowsJafroc>. Package functions are organized as follows. Data file related function names are preceded by 'Df', curve fitting functions by 'Fit', included data sets by 'dataset', plotting functions by 'Plot', significance testing functions by 'St', sample size related functions by 'Ss', data simulation functions by 'Simulate' and utility functions by 'Util'. Implemented are figures of merit (FOMs) for quantifying performance and functions for visualizing empirical or fitted operating characteristics: e.g., ROC, FROC, alternative FROC (AFROC) and weighted AFROC (wAFROC) curves. For fully crossed study designs significance testing of reader-averaged FOM differences between modalities is implemented via either Dorfman-Berbaum-Metz or the Obuchowski-Rockette methods. Also implemented is single modality analysis, which allows comparison of performance of a group of radiologists to a specified value, or comparison of AI to a group of radiologists interpreting the same cases. Crossed-modality analysis is implemented wherein there are two crossed modality factors and the aim is to determined performance in each modality factor averaged over all levels of the second factor. Sample size estimation tools are provided for ROC and FROC studies; these use estimates of the relevant variances from a pilot study to predict required numbers of readers and cases in a pivotal study to achieve the desired power. Utility and data file manipulation functions allow data to be read in any of the currently used input formats, including Excel, and the results of the analysis can be viewed in text or Excel output files. The methods are illustrated with several included datasets from the author's collaborations. This update includes improvements to the code, some as a result of user-reported bugs and new feature requests, and others discovered during ongoing testing and code simplification.

Maintained by Dev Chakraborty. Last updated 5 months ago.

ai-optimizationartificial-intelligence-algorithmscomputer-aided-diagnosisfroc-analysisroc-analysistarget-classificationtarget-localizationcpp

15.0 match 19 stars 5.69 score 65 scripts

jkcshea

ivmte:Instrumental Variables: Extrapolation by Marginal Treatment Effects

The marginal treatment effect was introduced by Heckman and Vytlacil (2005) <doi:10.1111/j.1468-0262.2005.00594.x> to provide a choice-theoretic interpretation to instrumental variables models that maintain the monotonicity condition of Imbens and Angrist (1994) <doi:10.2307/2951620>. This interpretation can be used to extrapolate from the compliers to estimate treatment effects for other subpopulations. This package provides a flexible set of methods for conducting this extrapolation. It allows for parametric or nonparametric sieve estimation, and allows the user to maintain shape restrictions such as monotonicity. The package operates in the general framework developed by Mogstad, Santos and Torgovitsky (2018) <doi:10.3982/ECTA15463>, and accommodates either point identification or partial identification (bounds). In the partially identified case, bounds are computed using either linear programming or quadratically constrained quadratic programming. Support for four solvers is provided. Gurobi and the Gurobi R API can be obtained from <http://www.gurobi.com/index>. CPLEX can be obtained from <https://www.ibm.com/analytics/cplex-optimizer>. CPLEX R APIs 'Rcplex' and 'cplexAPI' are available from CRAN. MOSEK and the MOSEK R API can be obtained from <https://www.mosek.com/>. The lp_solve library is freely available from <http://lpsolve.sourceforge.net/5.5/>, and is included when installing its API 'lpSolveAPI', which is available from CRAN.

Maintained by Joshua Shea. Last updated 7 months ago.

15.4 match 18 stars 5.33 score 30 scripts

bioc

preprocessCore:A collection of pre-processing functions

A library of core preprocessing routines.

Maintained by Ben Bolstad. Last updated 5 months ago.

infrastructureopenblas

5.5 match 19 stars 12.03 score 1.8k scripts 204 dependents

ucl

rmcmc:Robust Markov Chain Monte Carlo Methods

Functions for simulating Markov chains using the Barker proposal to compute Markov chain Monte Carlo (MCMC) estimates of expectations with respect to a target distribution on a real-valued vector space. The Barker proposal, described in Livingstone and Zanella (2022) <doi:10.1111/rssb.12482>, is a gradient-based MCMC algorithm inspired by the Barker accept-reject rule. It combines the robustness of simpler MCMC schemes, such as random-walk Metropolis, with the efficiency of gradient-based methods, such as the Metropolis adjusted Langevin algorithm. The key function provided by the package is sample_chain(), which allows sampling a Markov chain with a specified target distribution as its stationary distribution. The chain is sampled by generating proposals and accepting or rejecting them using a Metropolis-Hasting acceptance rule. During an initial warm-up stage, the parameters of the proposal distribution can be adapted, with adapters available to both: tune the scale of the proposals by coercing the average acceptance rate to a target value; tune the shape of the proposals to match covariance estimates under the target distribution. As well as the default Barker proposal, the package also provides implementations of alternative proposal distributions, such as (Gaussian) random walk and Langevin proposals. Optionally, if 'BridgeStan's R interface <https://roualdes.github.io/bridgestan/latest/languages/r.html>, available on GitHub <https://github.com/roualdes/bridgestan>, is installed, then 'BridgeStan' can be used to specify the target distribution to sample from.

Maintained by Matthew M. Graham. Last updated 12 days ago.

approximate-inferencemcmc

10.4 match 5 stars 5.85 score 8 scripts

nhejazi

txshift:Efficient Estimation of the Causal Effects of Stochastic Interventions

Efficient estimation of the population-level causal effects of stochastic interventions on a continuous-valued exposure. Both one-step and targeted minimum loss estimators are implemented for the counterfactual mean value of an outcome of interest under an additive modified treatment policy, a stochastic intervention that may depend on the natural value of the exposure. To accommodate settings with outcome-dependent two-phase sampling, procedures incorporating inverse probability of censoring weighting are provided to facilitate the construction of inefficient and efficient one-step and targeted minimum loss estimators. The causal parameter and its estimation were first described by Dรญaz and van der Laan (2013) <doi:10.1111/j.1541-0420.2011.01685.x>, while the multiply robust estimation procedure and its application to data from two-phase sampling designs is detailed in NS Hejazi, MJ van der Laan, HE Janes, PB Gilbert, and DC Benkeser (2020) <doi:10.1111/biom.13375>. The software package implementation is described in NS Hejazi and DC Benkeser (2020) <doi:10.21105/joss.02447>. Estimation of nuisance parameters may be enhanced through the Super Learner ensemble model in 'sl3', available for download from GitHub using 'remotes::install_github("tlverse/sl3")'.

Maintained by Nima Hejazi. Last updated 6 months ago.

causal-effectscausal-inferencecensored-datamachine-learningrobust-statisticsstatisticsstochastic-interventionsstochastic-treatment-regimestargeted-learningtreatment-effectsvariable-importance

9.9 match 14 stars 5.12 score 19 scripts

prioriactions

prioriactions:Multi-Action Conservation Planning

This uses a mixed integer mathematical programming (MIP) approach for building and solving multi-action planning problems, where the goal is to find an optimal combination of management actions that abate threats, in an efficient way while accounting for spatial aspects. Thus, optimizing the connectivity and conservation effectiveness of the prioritized units and of the deployed actions. The package is capable of handling different commercial (gurobi, CPLEX) and non-commercial (symphony, CBC) MIP solvers. Gurobi optimization solver can be installed using comprehensive instructions in the 'gurobi' installation vignette of the prioritizr package (available in <https://prioritizr.net/articles/gurobi_installation_guide.html>). Instead, 'CPLEX' optimization solver can be obtain from IBM CPLEX web page (available here <https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio>). Additionally, the 'rcbc' R package (available at <https://github.com/dirkschumacher/rcbc>) can be used to obtain solutions using the CBC optimization software (<https://github.com/coin-or/Cbc>). Methods used in the package refers to Salgado-Rojas et al. (2020) <doi:10.1016/j.ecolmodel.2019.108901>, Beyer et al. (2016) <doi:10.1016/j.ecolmodel.2016.02.005>, Cattarino et al. (2015) <doi:10.1371/journal.pone.0128027> and Watts et al. (2009) <doi:10.1016/j.envsoft.2009.06.005>. See the prioriactions website for more information, documentations and examples.

Maintained by Jose Salgado-Rojas. Last updated 2 years ago.

conservationconservation-planoptimizationprioritizationthreatscpp

7.8 match 10 stars 5.40 score 6 scripts

bioc

TargetDecoy:Diagnostic Plots to Evaluate the Target Decoy Approach

A first step in the data analysis of Mass Spectrometry (MS) based proteomics data is to identify peptides and proteins. With this respect the huge number of experimental mass spectra typically have to be assigned to theoretical peptides derived from a sequence database. Search engines are used for this purpose. These tools compare each of the observed spectra to all candidate theoretical spectra derived from the sequence data base and calculate a score for each comparison. The observed spectrum is then assigned to the theoretical peptide with the best score, which is also referred to as the peptide to spectrum match (PSM). It is of course crucial for the downstream analysis to evaluate the quality of these matches. Therefore False Discovery Rate (FDR) control is used to return a reliable list PSMs. The FDR, however, requires a good characterisation of the score distribution of PSMs that are matched to the wrong peptide (bad target hits). In proteomics, the target decoy approach (TDA) is typically used for this purpose. The TDA method matches the spectra to a database of real (targets) and nonsense peptides (decoys). A popular approach to generate these decoys is to reverse the target database. Hence, all the PSMs that match to a decoy are known to be bad hits and the distribution of their scores are used to estimate the distribution of the bad scoring target PSMs. A crucial assumption of the TDA is that the decoy PSM hits have similar properties as bad target hits so that the decoy PSM scores are a good simulation of the target PSM scores. Users, however, typically do not evaluate these assumptions. To this end we developed TargetDecoy to generate diagnostic plots to evaluate the quality of the target decoy method.

Maintained by Elke Debrie. Last updated 5 months ago.

massspectrometryproteomicsqualitycontrolsoftwarevisualizationbioconductormass-spectrometry

8.8 match 1 stars 4.60 score 9 scripts

patzaw

BED:Biological Entity Dictionary (BED)

An interface for the 'Neo4j' database providing mapping between different identifiers of biological entities. This Biological Entity Dictionary (BED) has been developed to address three main challenges. The first one is related to the completeness of identifier mappings. Indeed, direct mapping information provided by the different systems are not always complete and can be enriched by mappings provided by other resources. More interestingly, direct mappings not identified by any of these resources can be indirectly inferred by using mappings to a third reference. For example, many human Ensembl gene ID are not directly mapped to any Entrez gene ID but such mappings can be inferred using respective mappings to HGNC ID. The second challenge is related to the mapping of deprecated identifiers. Indeed, entity identifiers can change from one resource release to another. The identifier history is provided by some resources, such as Ensembl or the NCBI, but it is generally not used by mapping tools. The third challenge is related to the automation of the mapping process according to the relationships between the biological entities of interest. Indeed, mapping between gene and protein ID scopes should not be done the same way than between two scopes regarding gene ID. Also, converting identifiers from different organisms should be possible using gene orthologs information. The method has been published by Godard and van Eyll (2018) <doi:10.12688/f1000research.13925.3>.

Maintained by Patrice Godard. Last updated 3 months ago.

5.2 match 8 stars 6.85 score 25 scripts

hubverse-org

hubExamples:Example Hub Data

This package provides example data for forecasting and scenario modeling hubs in the hubverse format.

Maintained by Evan L Ray. Last updated 2 months ago.

6.2 match 1 stars 5.46 score 20 scripts 1 dependents

usdaforestservice

gdalraster:Bindings to the 'Geospatial Data Abstraction Library' Raster API

Interface to the Raster API of the 'Geospatial Data Abstraction Library' ('GDAL', <https://gdal.org>). Bindings are implemented in an exposed C++ class encapsulating a 'GDALDataset' and its raster band objects, along with several stand-alone functions. These support manual creation of uninitialized datasets, creation from existing raster as template, read/set dataset parameters, low level I/O, color tables, raster attribute tables, virtual raster (VRT), and 'gdalwarp' wrapper for reprojection and mosaicing. Includes 'GDAL' algorithms ('dem_proc()', 'polygonize()', 'rasterize()', etc.), and functions for coordinate transformation and spatial reference systems. Calling signatures resemble the native C, C++ and Python APIs provided by the 'GDAL' project. Includes raster 'calc()' to evaluate a given R expression on a layer or stack of layers, with pixel x/y available as variables in the expression; and raster 'combine()' to identify and count unique pixel combinations across multiple input layers, with optional output of the pixel-level combination IDs. Provides raster display using base 'graphics'. Bindings to a subset of the 'OGR' API are also included for managing vector data sources. Bindings to a subset of the Virtual Systems Interface ('VSI') are also included to support operations on 'GDAL' virtual file systems. These are general utility functions that abstract file system operations on URLs, cloud storage services, 'Zip'/'GZip'/'7z'/'RAR' archives, and in-memory files. 'gdalraster' may be useful in applications that need scalable, low-level I/O, or prefer a direct 'GDAL' API.

Maintained by Chris Toney. Last updated 4 hours ago.

gdalgeospatialrastervectorcpp

3.5 match 42 stars 9.50 score 32 scripts 3 dependents