Showing 199 of total 199 results (show query)

wraff

wrProteo:Proteomics Data Analysis Functions

Data analysis of proteomics experiments by mass spectrometry is supported by this collection of functions mostly dedicated to the analysis of (bottom-up) quantitative (XIC) data. Fasta-formatted proteomes (eg from UniProt Consortium <doi:10.1093/nar/gky1049>) can be read with automatic parsing and multiple annotation types (like species origin, abbreviated gene names, etc) extracted. Initial results from multiple software for protein (and peptide) quantitation can be imported (to a common format): MaxQuant (Tyanova et al 2016 <doi:10.1038/nprot.2016.136>), Dia-NN (Demichev et al 2020 <doi:10.1038/s41592-019-0638-x>), Fragpipe (da Veiga et al 2020 <doi:10.1038/s41592-020-0912-y>), ionbot (Degroeve et al 2021 <doi:10.1101/2021.07.02.450686>), MassChroq (Valot et al 2011 <doi:10.1002/pmic.201100120>), OpenMS (Strauss et al 2021 <doi:10.1038/nmeth.3959>), ProteomeDiscoverer (Orsburn 2021 <doi:10.3390/proteomes9010015>), Proline (Bouyssie et al 2020 <doi:10.1093/bioinformatics/btaa118>), AlphaPept (preprint Strauss et al <doi:10.1101/2021.07.23.453379>) and Wombat-P (Bouyssie et al 2023 <doi:10.1021/acs.jproteome.3c00636>. Meta-data provided by initial analysis software and/or in sdrf format can be integrated to the analysis. Quantitative proteomics measurements frequently contain multiple NA values, due to physical absence of given peptides in some samples, limitations in sensitivity or other reasons. Help is provided to inspect the data graphically to investigate the nature of NA-values via their respective replicate measurements and to help/confirm the choice of NA-replacement algorithms. Meta-data in sdrf-format (Perez-Riverol et al 2020 <doi:10.1021/acs.jproteome.0c00376>) or similar tabular formats can be imported and included. Missing values can be inspected and imputed based on the concept of NA-neighbours or other methods. Dedicated filtering and statistical testing using the framework of package 'limma' <doi:10.18129/B9.bioc.limma> can be run, enhanced by multiple rounds of NA-replacements to provide robustness towards rare stochastic events. Multi-species samples, as frequently used in benchmark-tests (eg Navarro et al 2016 <doi:10.1038/nbt.3685>, Ramus et al 2016 <doi:10.1016/j.jprot.2015.11.011>), can be run with special options considering such sub-groups during normalization and testing. Subsequently, ROC curves (Hand and Till 2001 <doi:10.1023/A:1010920819831>) can be constructed to compare multiple analysis approaches. As detailed example the data-set from Ramus et al 2016 <doi:10.1016/j.jprot.2015.11.011>) quantified by MaxQuant, ProteomeDiscoverer, and Proline is provided with a detailed analysis of heterologous spike-in proteins.

Maintained by Wolfgang Raffelsberger. Last updated 4 months ago.

17.8 match 3.67 score 17 scripts 1 dependents

kaiaragaki

qp:A toolkit for analyzing protein quantification results

What the package does (one paragraph).

Maintained by Kai Aragaki. Last updated 10 months ago.

8.8 match 3.00 score 8 scripts

hugheylab

seeker:Simplified Fetching and Processing of Microarray and RNA-Seq Data

Wrapper around various existing tools and command-line interfaces, providing a standard interface, simple parallelization, and detailed logging. For microarray data, maps probe sets to standard gene IDs, building on 'GEOquery' Davis and Meltzer (2007) <doi:10.1093/bioinformatics/btm254>, 'ArrayExpress' Kauffmann et al. (2009) <doi:10.1093/bioinformatics/btp354>, Robust multi-array average 'RMA' Irizarry et al. (2003) <doi:10.1093/biostatistics/4.2.249>, and 'BrainArray' Dai et al. (2005) <doi:10.1093/nar/gni179>. For RNA-seq data, fetches metadata and raw reads from National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA), performs standard adapter and quality trimming using 'TrimGalore' Krueger <https://github.com/FelixKrueger/TrimGalore>, performs quality control checks using 'FastQC' Andrews <https://github.com/s-andrews/FastQC>, quantifies transcript abundances using 'salmon' Patro et al. (2017) <doi:10.1038/nmeth.4197> and potentially 'refgenie' Stolarczyk et al. (2020) <doi:10.1093/gigascience/giz149>, aggregates the results using 'MultiQC' Ewels et al. (2016) <doi:10.1093/bioinformatics/btw354>, maps transcripts to genes using 'biomaRt' Durinkck et al. (2009) <doi:10.1038/nprot.2009.97>, and summarizes transcript-level quantifications for gene-level analyses using 'tximport' Soneson et al. (2015) <doi:10.12688/f1000research.7563.2>.

Maintained by Jake Hughey. Last updated 7 months ago.

4.2 match 3 stars 4.78 score 1 scripts

bioc

transcriptR:An Integrative Tool for ChIP- And RNA-Seq Based Primary Transcripts Detection and Quantification

The differences in the RNA types being sequenced have an impact on the resulting sequencing profiles. mRNA-seq data is enriched with reads derived from exons, while GRO-, nucRNA- and chrRNA-seq demonstrate a substantial broader coverage of both exonic and intronic regions. The presence of intronic reads in GRO-seq type of data makes it possible to use it to computationally identify and quantify all de novo continuous regions of transcription distributed across the genome. This type of data, however, is more challenging to interpret and less common practice compared to mRNA-seq. One of the challenges for primary transcript detection concerns the simultaneous transcription of closely spaced genes, which needs to be properly divided into individually transcribed units. The R package transcriptR combines RNA-seq data with ChIP-seq data of histone modifications that mark active Transcription Start Sites (TSSs), such as, H3K4me3 or H3K9/14Ac to overcome this challenge. The advantage of this approach over the use of, for example, gene annotations is that this approach is data driven and therefore able to deal also with novel and case specific events. Furthermore, the integration of ChIP- and RNA-seq data allows the identification all known and novel active transcription start sites within a given sample.

Maintained by Armen R. Karapetyan. Last updated 5 months ago.

immunooncologytranscriptionsoftwaresequencingrnaseqcoverage

5.5 match 3.30 score 2 scripts

andrewzm

FRK:Fixed Rank Kriging

A tool for spatial/spatio-temporal modelling and prediction with large datasets. The approach models the field, and hence the covariance function, using a set of basis functions. This fixed-rank basis-function representation facilitates the modelling of big data, and the method naturally allows for non-stationary, anisotropic covariance functions. Discretisation of the spatial domain into so-called basic areal units (BAUs) facilitates the use of observations with varying support (i.e., both point-referenced and areal supports, potentially simultaneously), and prediction over arbitrary user-specified regions. `FRK` also supports inference over various manifolds, including the 2D plane and 3D sphere, and it provides helper functions to model, fit, predict, and plot with relative ease. Version 2.0.0 and above also supports the modelling of non-Gaussian data (e.g., Poisson, binomial, negative-binomial, gamma, and inverse-Gaussian) by employing a generalised linear mixed model (GLMM) framework. Zammit-Mangion and Cressie <doi:10.18637/jss.v098.i04> describe `FRK` in a Gaussian setting, and detail its use of basis functions and BAUs, while Sainsbury-Dale, Zammit-Mangion, and Cressie <doi:10.18637/jss.v108.i10> describe `FRK` in a non-Gaussian setting; two vignettes are available that summarise these papers and provide additional examples.

Maintained by Andrew Zammit-Mangion. Last updated 6 months ago.

cpp

1.9 match 71 stars 8.70 score 188 scripts 1 dependents

kaiaragaki

gplate:A Grammar of Plates

`gplate` attempts to provide a succinct yet powerful grammar to describe common microwell layouts to aide in both plotting and tidying.

Maintained by Kai Aragaki. Last updated 7 months ago.

ggplot2

3.2 match 4 stars 4.56 score 9 scripts 3 dependents

bioc

GRaNIE:GRaNIE: Reconstruction cell type specific gene regulatory networks including enhancers using single-cell or bulk chromatin accessibility and RNA-seq data

Genetic variants associated with diseases often affect non-coding regions, thus likely having a regulatory role. To understand the effects of genetic variants in these regulatory regions, identifying genes that are modulated by specific regulatory elements (REs) is crucial. The effect of gene regulatory elements, such as enhancers, is often cell-type specific, likely because the combinations of transcription factors (TFs) that are regulating a given enhancer have cell-type specific activity. This TF activity can be quantified with existing tools such as diffTF and captures differences in binding of a TF in open chromatin regions. Collectively, this forms a gene regulatory network (GRN) with cell-type and data-specific TF-RE and RE-gene links. Here, we reconstruct such a GRN using single-cell or bulk RNAseq and open chromatin (e.g., using ATACseq or ChIPseq for open chromatin marks) and optionally (Capture) Hi-C data. Our network contains different types of links, connecting TFs to regulatory elements, the latter of which is connected to genes in the vicinity or within the same chromatin domain (TAD). We use a statistical framework to assign empirical FDRs and weights to all links using a permutation-based approach.

Maintained by Christian Arnold. Last updated 5 months ago.

softwaregeneexpressiongeneregulationnetworkinferencegenesetenrichmentbiomedicalinformaticsgeneticstranscriptomicsatacseqrnaseqgraphandnetworkregressiontranscriptionchipseq

2.7 match 5.40 score 24 scripts

pulongma

GPBayes:Tools for Gaussian Process Modeling in Uncertainty Quantification

Gaussian processes ('GPs') have been widely used to model spatial data, 'spatio'-temporal data, and computer experiments in diverse areas of statistics including spatial statistics, 'spatio'-temporal statistics, uncertainty quantification, and machine learning. This package creates basic tools for fitting and prediction based on 'GPs' with spatial data, 'spatio'-temporal data, and computer experiments. Key characteristics for this GP tool include: (1) the comprehensive implementation of various covariance functions including the 'Matรฉrn' family and the Confluent 'Hypergeometric' family with isotropic form, tensor form, and automatic relevance determination form, where the isotropic form is widely used in spatial statistics, the tensor form is widely used in design and analysis of computer experiments and uncertainty quantification, and the automatic relevance determination form is widely used in machine learning; (2) implementations via Markov chain Monte Carlo ('MCMC') algorithms and optimization algorithms for GP models with all the implemented covariance functions. The methods for fitting and prediction are mainly implemented in a Bayesian framework; (3) model evaluation via Fisher information and predictive metrics such as predictive scores; (4) built-in functionality for simulating 'GPs' with all the implemented covariance functions; (5) unified implementation to allow easy specification of various 'GPs'.

Maintained by Pulong Ma. Last updated 11 months ago.

gslcppopenmp

5.4 match 3 stars 2.48 score 3 scripts

jatanrt

eprscope:Processing and Analysis of Electron Paramagnetic Resonance Data and Spectra in Chemistry

Processing, analysis and plottting of Electron Paramagnetic Resonance (EPR) spectra in chemistry. Even though the package is mainly focused on continuous wave (CW) EPR/ENDOR, many functions may be also used for the integrated forms of 1D PULSED EPR spectra. It is able to find the most important spectral characteristics like g-factor, linewidth, maximum of derivative or integral intensities and single/double integrals. This is especially important in spectral (time) series consisting of many EPR spectra like during variable temperature experiments, electrochemical or photochemical radical generation and/or decay. Package also enables processing of data/spectra for the analytical (quantitative) purposes. Namely, how many radicals or paramagnetic centers can be found in the analyte/sample. The goal is to evaluate rate constants, considering different kinetic models, to describe the radical reactions. The key feature of the package resides in processing of the universal ASCII text formats (such as '.txt', '.csv' or '.asc') from scratch. No proprietary formats are used (except the MATLAB EasySpin outputs) and in such respect the package is in accordance with the FAIR data principles. Upon 'reading' (also providing automatic procedures for the most common EPR spectrometers) the spectral data are transformed into the universal R 'data frame' format. Subsequently, the EPR spectra can be visualized and are fully consistent either with the 'ggplot2' package or with the interactive formats based on 'plotly'. Additionally, simulations and fitting of the isotropic EPR spectra are also included in the package. Advanced simulation parameters provided by the MATLAB-EasySpin toolbox and results from the quantum chemical calculations like g-factor and hyperfine splitting/coupling constants (a/A) can be compared and summarized in table-format in order to analyze the EPR spectra by the most effective way.

Maintained by Jรกn Tarรกbek. Last updated 2 days ago.

openjdk

1.9 match 4.74 score 7 scripts

bioc

BASiCS:Bayesian Analysis of Single-Cell Sequencing data

Single-cell mRNA sequencing can uncover novel cell-to-cell heterogeneity in gene expression levels in seemingly homogeneous populations of cells. However, these experiments are prone to high levels of technical noise, creating new challenges for identifying genes that show genuine heterogeneous expression within the population of cells under study. BASiCS (Bayesian Analysis of Single-Cell Sequencing data) is an integrated Bayesian hierarchical model to perform statistical analyses of single-cell RNA sequencing datasets in the context of supervised experiments (where the groups of cells of interest are known a priori, e.g. experimental conditions or cell types). BASiCS performs built-in data normalisation (global scaling) and technical noise quantification (based on spike-in genes). BASiCS provides an intuitive detection criterion for highly (or lowly) variable genes within a single group of cells. Additionally, BASiCS can compare gene expression patterns between two or more pre-specified groups of cells. Unlike traditional differential expression tools, BASiCS quantifies changes in expression that lie beyond comparisons of means, also allowing the study of changes in cell-to-cell heterogeneity. The latter can be quantified via a biological over-dispersion parameter that measures the excess of variability that is observed with respect to Poisson sampling noise, after normalisation and technical noise removal. Due to the strong mean/over-dispersion confounding that is typically observed for scRNA-seq datasets, BASiCS also tests for changes in residual over-dispersion, defined by residual values with respect to a global mean/over-dispersion trend.

Maintained by Catalina Vallejos. Last updated 5 months ago.

immunooncologynormalizationsequencingrnaseqsoftwaregeneexpressiontranscriptomicssinglecelldifferentialexpressionbayesiancellbiologybioconductor-packagegene-expressionrcpprcpparmadilloscrna-seqsingle-cellopenblascppopenmp

0.5 match 83 stars 10.26 score 368 scripts 1 dependents

grosenberger

aLFQ:Estimating Absolute Protein Quantities from Label-Free LC-MS/MS Proteomics Data

Determination of absolute protein quantities is necessary for multiple applications, such as mechanistic modeling of biological systems. Quantitative liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics can measure relative protein abundance on a system-wide scale. To estimate absolute quantitative information using these relative abundance measurements requires additional information such as heavy-labeled references of known concentration. Multiple methods have been using different references and strategies; some are easily available whereas others require more effort on the users end. Hence, we believe the field might benefit from making some of these methods available under an automated framework, which also facilitates validation of the chosen strategy. We have implemented the most commonly used absolute label-free protein abundance estimation methods for LC-MS/MS modes quantifying on either MS1-, MS2-levels or spectral counts together with validation algorithms to enable automated data analysis and error estimation. Specifically, we used Monte-carlo cross-validation and bootstrapping for model selection and imputation of proteome-wide absolute protein quantity estimation. Our open-source software is written in the statistical programming language R and validated and demonstrated on a synthetic sample.

Maintained by George Rosenberger. Last updated 5 years ago.

1.7 match 1.85 score 14 scripts

agqhammond

UKFE:UK Flood Estimation

Functions to implement the methods of the Flood Estimation Handbook (FEH), associated updates and the revitalised flood hydrograph model (ReFH). Currently the package uses NRFA peak flow dataset version 13. Aside from FEH functionality, further hydrological functions are available. Most of the methods implemented in this package are described in one or more of the following: "Flood Estimation Handbook", Centre for Ecology & Hydrology (1999, ISBN:0 948540 94 X). "Flood Estimation Handbook Supplementary Report No. 1", Kjeldsen (2007, ISBN:0 903741 15 7). "Regional Frequency Analysis - an approach based on L-moments", Hosking & Wallis (1997, ISBN: 978 0 521 01940 8). "Proposal of the extreme rank plot for extreme value analysis: with an emphasis on flood frequency studies", Hammond (2019, <doi:10.2166/nh.2019.157>). "Making better use of local data in flood frequency estimation", Environment Agency (2017, ISBN: 978 1 84911 387 8). "Sampling uncertainty of UK design flood estimation" , Hammond (2021, <doi:10.2166/nh.2021.059>). "Improving the FEH statistical procedures for flood frequency estimation", Environment Agency (2008, ISBN: 978 1 84432 920 5). "Low flow estimation in the United Kingdom", Institute of Hydrology (1992, ISBN 0 948540 45 1). Wallingford HydroSolutions, (2016, <http://software.hydrosolutions.co.uk/winfap4/Urban-Adjustment-Procedure-Technical-Note.pdf>). Data from the UK National River Flow Archive (<https://nrfa.ceh.ac.uk/>, terms and conditions: <https://nrfa.ceh.ac.uk/costs-terms-and-conditions>).

Maintained by Anthony Hammond. Last updated 1 months ago.

1.8 match 1 stars 1.78 score

cran

ShapePattern:Tools for Analyzing Shapes and Patterns

This is an evolving and growing collection of tools for the quantification, assessment, and comparison of shape and pattern. This collection provides tools for: (1) the spatial decomposition of planar shapes using 'ShrinkShape' to incrementally shrink shapes to extinction while computing area, perimeter, and number of parts at each iteration of shrinking; the spectra of results are returned in graphic and tabular formats (Remmel 2015) <doi:10.1111/cag.12222>, (2) simulating landscape patterns, (3) provision of tools for estimating composition and configuration parameters from a categorical (binary) landscape map (grid) and then simulates a selected number of statistically similar landscapes. Class-focused pattern metrics are computed for each simulated map to produce empirical distributions against which statistical comparisons can be made. The code permits the analysis of single maps or pairs of maps (Remmel and Fortin 2013) <doi:10.1007/s10980-013-9905-x>, (4) counting the number of each first-order pattern element and converting that information into both frequency and empirical probability vectors (Remmel 2020) <doi:10.3390/e22040420>, and (5) computing the porosity of raster patches <doi:10.3390/su10103413>. NOTE: This is a consolidation of existing packages ('PatternClass', 'ShapePattern') to begin warehousing all shape and pattern code in a common package. Additional utility tools for handling data are provided and this package will be added to as more tools are created, cleaned-up, and documented. Note that all future developments will appear in this package and that 'PatternClass' will eventually be archived.

Maintained by Tarmo K. Remmel. Last updated 3 months ago.

0.5 match 1.00 score