Showing 200 of total 1391 results (show query)

r-spatial

spdep:Spatial Dependence: Weighting Schemes, Statistics

A collection of functions to create spatial weights matrix objects from polygon 'contiguities', from point patterns by distance and tessellations, for summarizing these objects, and for permitting their use in spatial data analysis, including regional aggregation by minimum spanning tree; a collection of tests for spatial 'autocorrelation', including global 'Morans I' and 'Gearys C' proposed by 'Cliff' and 'Ord' (1973, ISBN: 0850860369) and (1981, ISBN: 0850860814), 'Hubert/Mantel' general cross product statistic, Empirical Bayes estimates and 'Assunção/Reis' (1999) <doi:10.1002/(SICI)1097-0258(19990830)18:16%3C2147::AID-SIM179%3E3.0.CO;2-I> Index, 'Getis/Ord' G ('Getis' and 'Ord' 1992) <doi:10.1111/j.1538-4632.1992.tb00261.x> and multicoloured join count statistics, 'APLE' ('Li 'et al.' ) <doi:10.1111/j.1538-4632.2007.00708.x>, local 'Moran's I', 'Gearys C' ('Anselin' 1995) <doi:10.1111/j.1538-4632.1995.tb00338.x> and 'Getis/Ord' G ('Ord' and 'Getis' 1995) <doi:10.1111/j.1538-4632.1995.tb00912.x>, 'saddlepoint' approximations ('Tiefelsdorf' 2002) <doi:10.1111/j.1538-4632.2002.tb01084.x> and exact tests for global and local 'Moran's I' ('Bivand et al.' 2009) <doi:10.1016/j.csda.2008.07.021> and 'LOSH' local indicators of spatial heteroscedasticity ('Ord' and 'Getis') <doi:10.1007/s00168-011-0492-y>. The implementation of most of these measures is described in 'Bivand' and 'Wong' (2018) <doi:10.1007/s11749-018-0599-x>, with further extensions in 'Bivand' (2022) <doi:10.1111/gean.12319>. 'Lagrange' multiplier tests for spatial dependence in linear models are provided ('Anselin et al'. 1996) <doi:10.1016/0166-0462(95)02111-6>, as are 'Rao' score tests for hypothesised spatial 'Durbin' models based on linear models ('Koley' and 'Bera' 2023) <doi:10.1080/17421772.2023.2256810>. A local indicators for categorical data (LICD) implementation based on 'Carrer et al.' (2021) <doi:10.1016/j.jas.2020.105306> and 'Bivand et al.' (2017) <doi:10.1016/j.spasta.2017.03.003> was added in 1.3-7. From 'spdep' and 'spatialreg' versions >= 1.2-1, the model fitting functions previously present in this package are defunct in 'spdep' and may be found in 'spatialreg'.

Maintained by Roger Bivand. Last updated 1 months ago.

spatial-autocorrelationspatial-dependencespatial-weights

121.4 match 131 stars 16.59 score 6.0k scripts 106 dependents

r-spatial

spatialreg:Spatial Regression Analysis

A collection of all the estimation functions for spatial cross-sectional models (on lattice/areal data using spatial weights matrices) contained up to now in 'spdep'. These model fitting functions include maximum likelihood methods for cross-sectional models proposed by 'Cliff' and 'Ord' (1973, ISBN:0850860369) and (1981, ISBN:0850860814), fitting methods initially described by 'Ord' (1975) <doi:10.1080/01621459.1975.10480272>. The models are further described by 'Anselin' (1988) <doi:10.1007/978-94-015-7799-1>. Spatial two stage least squares and spatial general method of moment models initially proposed by 'Kelejian' and 'Prucha' (1998) <doi:10.1023/A:1007707430416> and (1999) <doi:10.1111/1468-2354.00027> are provided. Impact methods and MCMC fitting methods proposed by 'LeSage' and 'Pace' (2009) <doi:10.1201/9781420064254> are implemented for the family of cross-sectional spatial regression models. Methods for fitting the log determinant term in maximum likelihood and MCMC fitting are compared by 'Bivand et al.' (2013) <doi:10.1111/gean.12008>, and model fitting methods by 'Bivand' and 'Piras' (2015) <doi:10.18637/jss.v063.i18>; both of these articles include extensive lists of references. A recent review is provided by 'Bivand', 'Millo' and 'Piras' (2021) <doi:10.3390/math9111276>. 'spatialreg' >= 1.1-* corresponded to 'spdep' >= 1.1-1, in which the model fitting functions were deprecated and passed through to 'spatialreg', but masked those in 'spatialreg'. From versions 1.2-*, the functions have been made defunct in 'spdep'. From version 1.3-6, add Anselin-Kelejian (1997) test to `stsls` for residual spatial autocorrelation <doi:10.1177/016001769702000109>.

Maintained by Roger Bivand. Last updated 8 days ago.

bayesianimpactsmaximum-likelihoodspatial-dependencespatial-econometricsspatial-regressionopenblas

82.5 match 46 stars 12.97 score 916 scripts 24 dependents

spatstat

spatstat.model:Parametric Statistical Modelling and Inference for the 'spatstat' Family

Functionality for parametric statistical modelling and inference for spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Supports parametric modelling, formal statistical inference, and model validation. Parametric models include Poisson point processes, Cox point processes, Neyman-Scott cluster processes, Gibbs point processes and determinantal point processes. Models can be fitted to data using maximum likelihood, maximum pseudolikelihood, maximum composite likelihood and the method of minimum contrast. Fitted models can be simulated and predicted. Formal inference includes hypothesis tests (quadrat counting tests, Cressie-Read tests, Clark-Evans test, Berman test, Diggle-Cressie-Loosmore-Ford test, scan test, studentised permutation test, segregation test, ANOVA tests of fitted models, adjusted composite likelihood ratio test, envelope tests, Dao-Genton test, balanced independent two-stage test), confidence intervals for parameters, and prediction intervals for point counts. Model validation techniques include leverage, influence, partial residuals, added variable plots, diagnostic plots, pseudoscore residual plots, model compensators and Q-Q plots.

Maintained by Adrian Baddeley. Last updated 7 days ago.

analysis-of-variancecluster-processconfidence-intervalscox-processdeterminantal-point-processesgibbs-processinfluenceleveragemodel-diagnosticsneyman-scottparameter-estimationpoisson-processspatial-analysisspatial-modellingspatial-point-processesstatistical-inference

68.5 match 5 stars 9.09 score 6 scripts 46 dependents

ropensci

stplanr:Sustainable Transport Planning

Tools for transport planning with an emphasis on spatial transport data and non-motorized modes. The package was originally developed to support the 'Propensity to Cycle Tool', a publicly available strategic cycle network planning tool (Lovelace et al. 2017) <doi:10.5198/jtlu.2016.862>, but has since been extended to support public transport routing and accessibility analysis (Moreno-Monroy et al. 2017) <doi:10.1016/j.jtrangeo.2017.08.012> and routing with locally hosted routing engines such as 'OSRM' (Lowans et al. 2023) <doi:10.1016/j.enconman.2023.117337>. The main functions are for creating and manipulating geographic "desire lines" from origin-destination (OD) data (building on the 'od' package); calculating routes on the transport network locally and via interfaces to routing services such as <https://cyclestreets.net/> (Desjardins et al. 2021) <doi:10.1007/s11116-021-10197-1>; and calculating route segment attributes such as bearing. The package implements the 'travel flow aggregration' method described in Morgan and Lovelace (2020) <doi:10.1177/2399808320942779> and the 'OD jittering' method described in Lovelace et al. (2022) <doi:10.32866/001c.33873>. Further information on the package's aim and scope can be found in the vignettes and in a paper in the R Journal (Lovelace and Ellison 2018) <doi:10.32614/RJ-2018-053>, and in a paper outlining the landscape of open source software for geographic methods in transport planning (Lovelace, 2021) <doi:10.1007/s10109-020-00342-2>.

Maintained by Robin Lovelace. Last updated 7 months ago.

cyclecyclingdesire-linesorigin-destinationpeer-reviewedpubic-transportroute-networkroutesroutingspatialtransporttransport-planningtransportationwalking

44.9 match 427 stars 12.31 score 684 scripts 3 dependents

spatstat

spatstat:Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests

Comprehensive open-source toolbox for analysing Spatial Point Patterns. Focused mainly on two-dimensional point patterns, including multitype/marked points, in any spatial region. Also supports three-dimensional point patterns, space-time point patterns in any number of dimensions, point patterns on a linear network, and patterns of other geometrical objects. Supports spatial covariate data such as pixel images. Contains over 3000 functions for plotting spatial data, exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference. Data types include point patterns, line segment patterns, spatial windows, pixel images, tessellations, and linear networks. Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the functions ppm(), kppm(), slrm(), dppm() similar to glm(). Types of models include Poisson, Gibbs and Cox point processes, Neyman-Scott cluster processes, and determinantal point processes. Models may involve dependence on covariates, inter-point interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods. A model can be fitted to a list of point patterns (replicated point pattern data) using the function mppm(). The model can include random effects and fixed effects depending on the experimental design, in addition to all the features listed above. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots.

Maintained by Adrian Baddeley. Last updated 7 days ago.

cluster-processcox-point-processgibbs-processkernel-densitynetwork-analysispoint-processpoisson-processspatial-analysisspatial-dataspatial-data-analysisspatial-statisticsspatstatstatistical-methodsstatistical-modelsstatistical-testsstatistics

33.0 match 200 stars 16.25 score 5.5k scripts 40 dependents

cran

spatial:Functions for Kriging and Point Pattern Analysis

Functions for kriging and point pattern analysis.

Maintained by Brian Ripley. Last updated 3 months ago.

71.6 match 6.53 score 134 dependents

dnychka

fields:Tools for Spatial Data

For curve, surface and function fitting with an emphasis on splines, spatial data, geostatistics, and spatial statistics. The major methods include cubic, and thin plate splines, Kriging, and compactly supported covariance functions for large data sets. The splines and Kriging methods are supported by functions that can determine the smoothing parameter (nugget and sill variance) and other covariance function parameters by cross validation and also by restricted maximum likelihood. For Kriging there is an easy to use function that also estimates the correlation scale (range parameter). A major feature is that any covariance function implemented in R and following a simple format can be used for spatial prediction. There are also many useful functions for plotting and working with spatial data as images. This package also contains an implementation of sparse matrix methods for large spatial data sets and currently requires the sparse matrix (spam) package. Use help(fields) to get started and for an overview. The fields source code is deliberately commented and provides useful explanations of numerical details as a companion to the manual pages. The commented source code can be viewed by expanding the source code version and looking in the R subdirectory. The reference for fields can be generated by the citation function in R and has DOI <doi:10.5065/D6W957CT>. Development of this package was supported in part by the National Science Foundation Grant 1417857, the National Center for Atmospheric Research, and Colorado School of Mines. See the Fields URL for a vignette on using this package and some background on spatial statistics.

Maintained by Douglas Nychka. Last updated 9 months ago.

fortran

23.8 match 15 stars 12.70 score 7.7k scripts 297 dependents

bodkan

slendr:A Simulation Framework for Spatiotemporal Population Genetics

A framework for simulating spatially explicit genomic data which leverages real cartographic information for programmatic and visual encoding of spatiotemporal population dynamics on real geographic landscapes. Population genetic models are then automatically executed by the 'SLiM' software by Haller et al. (2019) <doi:10.1093/molbev/msy228> behind the scenes, using a custom built-in simulation 'SLiM' script. Additionally, fully abstract spatial models not tied to a specific geographic location are supported, and users can also simulate data from standard, non-spatial, random-mating models. These can be simulated either with the 'SLiM' built-in back-end script, or using an efficient coalescent population genetics simulator 'msprime' by Baumdicker et al. (2022) <doi:10.1093/genetics/iyab229> with a custom-built 'Python' script bundled with the R package. Simulated genomic data is saved in a tree-sequence format and can be loaded, manipulated, and summarised using tree-sequence functionality via an R interface to the 'Python' module 'tskit' by Kelleher et al. (2019) <doi:10.1038/s41588-019-0483-y>. Complete model configuration, simulation and analysis pipelines can be therefore constructed without a need to leave the R environment, eliminating friction between disparate tools for population genetic simulations and data analysis.

Maintained by Martin Petr. Last updated 10 hours ago.

popgenpopulation-geneticssimulationsspatial-statistics

32.4 match 56 stars 9.13 score 88 scripts

jpearson0525

micromapST:Linked Micromap Plots for U. S. and Other Geographic Areas

Provides the users with the ability to quickly create linked micromap plots for a collection of geographic areas. Linked micromap plots are visualizations of geo-referenced data that link statistical graphics to an organized series of small maps or graphic images. The Help description contains examples of how to use the 'micromapST' function. Contained in this package are border group datasets to support creating linked micromap plots for the 50 U.S. states and District of Columbia (51 areas), the U. S. 20 Seer Registries, the 105 counties in the state of Kansas, the 62 counties of New York, the 24 counties of Maryland, the 29 counties of Utah, the 32 administrative areas in China, the 218 administrative areas in the UK and Ireland (for testing only), the 25 districts in the city of Seoul South Korea, and the 52 counties on the Africa continent. A border group dataset contains the boundaries related to the data level areas, a second layer boundaries, a top or third layer boundary, a parameter list of run options, and a cross indexing table between area names, abbreviations, numeric identification and alias matching strings for the specific geographic area. By specifying a border group, the package create linked micromap plots for any geographic region. The user can create and provide their own border group dataset for any area beyond the areas contained within the package. In version 3.0.0, the 'BuildBorderGroup' function was upgraded to not use the retiring 'maptools', 'rgdal', and 'rgeos' packages. References: Carr and Pickle, Chapman and Hall/CRC, Visualizing Data Patterns with Micromaps, CRC Press, 2010. Pickle, Pearson, and Carr (2015), micromapST: Exploring and Communicating Geospatial Patterns in US State Data., Journal of Statistical Software, 63(3), 1-25., <https://www.jstatsoft.org/v63/i03/>. Copyrighted 2013, 2014, 2015, 2016, 2022, 2023, 2024, and 2025 by Carr, Pearson and Pickle.

Maintained by Jim Pearson. Last updated 1 months ago.

101.7 match 2.80 score 21 scripts

paleolimbot

ggspatial:Spatial Data Framework for ggplot2

Spatial data plus the power of the ggplot2 framework means easier mapping when input data are already in the form of spatial objects.

Maintained by Dewey Dunnington. Last updated 2 years ago.

20.5 match 379 stars 12.85 score 4.1k scripts 24 dependents

r-spatial

classInt:Choose Univariate Class Intervals

Selected commonly used methods for choosing univariate class intervals for mapping or other graphics purposes.

Maintained by Roger Bivand. Last updated 3 months ago.

fortran

15.0 match 34 stars 16.17 score 3.2k scripts 1.2k dependents

josiahparry

sfdep:Spatial Dependence for Simple Features

An interface to 'spdep' to integrate with 'sf' objects and the 'tidyverse'.

Maintained by Dexter Locke. Last updated 7 months ago.

r-spatialspatial

31.4 match 130 stars 7.01 score 130 scripts

ropensci

waywiser:Ergonomic Methods for Assessing Spatial Models

Assessing predictive models of spatial data can be challenging, both because these models are typically built for extrapolating outside the original region represented by training data and due to potential spatially structured errors, with "hot spots" of higher than expected error clustered geographically due to spatial structure in the underlying data. Methods are provided for assessing models fit to spatial data, including approaches for measuring the spatial structure of model errors, assessing model predictions at multiple spatial scales, and evaluating where predictions can be made safely. Methods are particularly useful for models fit using the 'tidymodels' framework. Methods include Moran's I ('Moran' (1950) <doi:10.2307/2332142>), Geary's C ('Geary' (1954) <doi:10.2307/2986645>), Getis-Ord's G ('Ord' and 'Getis' (1995) <doi:10.1111/j.1538-4632.1995.tb00912.x>), agreement coefficients from 'Ji' and Gallo (2006) (<doi: 10.14358/PERS.72.7.823>), agreement metrics from 'Willmott' (1981) (<doi: 10.1080/02723646.1981.10642213>) and 'Willmott' 'et' 'al'. (2012) (<doi: 10.1002/joc.2419>), an implementation of the area of applicability methodology from 'Meyer' and 'Pebesma' (2021) (<doi:10.1111/2041-210X.13650>), and an implementation of multi-scale assessment as described in 'Riemann' 'et' 'al'. (2010) (<doi:10.1016/j.rse.2010.05.010>).

Maintained by Michael Mahoney. Last updated 11 days ago.

spatialspatial-analysistidymodelstidyverse

27.4 match 37 stars 6.93 score 19 scripts

spatstat

spatstat.linnet:Linear Networks Functionality of the 'spatstat' Family

Defines types of spatial data on a linear network and provides functionality for geometrical operations, data analysis and modelling of data on a linear network, in the 'spatstat' family of packages. Contains definitions and support for linear networks, including creation of networks, geometrical measurements, topological connectivity, geometrical operations such as inserting and deleting vertices, intersecting a network with another object, and interactive editing of networks. Data types defined on a network include point patterns, pixel images, functions, and tessellations. Exploratory methods include kernel estimation of intensity on a network, K-functions and pair correlation functions on a network, simulation envelopes, nearest neighbour distance and empty space distance, relative risk estimation with cross-validated bandwidth selection. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the function lppm() similar to glm(). Only Poisson models are implemented so far. Models may involve dependence on covariates and dependence on marks. Models are fitted by maximum likelihood. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots. Random point patterns on a network can be generated using a variety of models.

Maintained by Adrian Baddeley. Last updated 2 months ago.

density-estimationheat-equationkernel-density-estimationnetwork-analysispoint-processesspatial-data-analysisstatistical-analysisstatistical-inferencestatistical-models

17.8 match 6 stars 9.58 score 35 scripts 42 dependents

r-spatial

mapedit:Interactive Editing of Spatial Data in R

Suite of interactive functions and helpers for selecting and editing geospatial data.

Maintained by Tim Appelhans. Last updated 3 years ago.

18.0 match 218 stars 8.20 score 410 scripts 1 dependents

prioritizr

prioritizr:Systematic Conservation Prioritization in R

Systematic conservation prioritization using mixed integer linear programming (MILP). It provides a flexible interface for building and solving conservation planning problems. Once built, conservation planning problems can be solved using a variety of commercial and open-source exact algorithm solvers. By using exact algorithm solvers, solutions can be generated that are guaranteed to be optimal (or within a pre-specified optimality gap). Furthermore, conservation problems can be constructed to optimize the spatial allocation of different management actions or zones, meaning that conservation practitioners can identify solutions that benefit multiple stakeholders. To solve large-scale or complex conservation planning problems, users should install the Gurobi optimization software (available from <https://www.gurobi.com/>) and the 'gurobi' R package (see Gurobi Installation Guide vignette for details). Users can also install the IBM CPLEX software (<https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer>) and the 'cplexAPI' R package (available at <https://github.com/cran/cplexAPI>). Additionally, the 'rcbc' R package (available at <https://github.com/dirkschumacher/rcbc>) can be used to generate solutions using the CBC optimization software (<https://github.com/coin-or/Cbc>). For further details, see Hanson et al. (2025) <doi:10.1111/cobi.14376>.

Maintained by Richard Schuster. Last updated 1 days ago.

biodiversityconservationconservation-planneroptimizationprioritizationsolverspatialcpp

11.5 match 124 stars 11.71 score 584 scripts 2 dependents

briencj

asremlPlus:Augments 'ASReml-R' in Fitting Mixed Models and Packages Generally in Exploring Prediction Differences

Assists in automating the selection of terms to include in mixed models when 'asreml' is used to fit the models. Procedures are available for choosing models that conform to the hierarchy or marginality principle, for fitting and choosing between two-dimensional spatial models using correlation, natural cubic smoothing spline and P-spline models. A history of the fitting of a sequence of models is kept in a data frame. Also used to compute functions and contrasts of, to investigate differences between and to plot predictions obtained using any model fitting function. The content falls into the following natural groupings: (i) Data, (ii) Model modification functions, (iii) Model selection and description functions, (iv) Model diagnostics and simulation functions, (v) Prediction production and presentation functions, (vi) Response transformation functions, (vii) Object manipulation functions, and (viii) Miscellaneous functions (for further details see 'asremlPlus-package' in help). The 'asreml' package provides a computationally efficient algorithm for fitting a wide range of linear mixed models using Residual Maximum Likelihood. It is a commercial package and a license for it can be purchased from 'VSNi' <https://vsni.co.uk/> as 'asreml-R', who will supply a zip file for local installation/updating (see <https://asreml.kb.vsni.co.uk/>). It is not needed for functions that are methods for 'alldiffs' and 'data.frame' objects. The package 'asremPlus' can also be installed from <http://chris.brien.name/rpackages/>.

Maintained by Chris Brien. Last updated 1 months ago.

asremlmixed-models

14.2 match 19 stars 9.37 score 200 scripts