Showing 200 of total 997 results (show query)

jwood000

RcppAlgos:High Performance Tools for Combinatorics and Computational Mathematics

Provides optimized functions and flexible iterators implemented in C++ for solving problems in combinatorics and computational mathematics. Handles various combinatorial objects including combinations, permutations, integer partitions and compositions, Cartesian products, unordered Cartesian products, and partition of groups. Utilizes the RMatrix class from 'RcppParallel' for thread safety. The combination and permutation functions contain constraint parameters that allow for generation of all results of a vector meeting specific criteria (e.g. finding all combinations such that the sum is between two bounds). Capable of ranking/unranking combinatorial objects efficiently (e.g. retrieve only the nth lexicographical result) which sets up nicely for parallelization as well as random sampling. Gmp support permits exploration where the total number of results is large (e.g. comboSample(10000, 500, n = 4)). Additionally, there are several high performance number theoretic functions that are useful for problems common in computational mathematics. Some of these functions make use of the fast integer division library 'libdivide'. The primeSieve function is based on the segmented sieve of Eratosthenes implementation by Kim Walisch. It is also efficient for large numbers by using the cache friendly improvements originally developed by Tomás Oliveira. Finally, there is a prime counting function that implements Legendre's formula based on the work of Kim Walisch.

Maintained by Joseph Wood. Last updated 1 months ago.

combinationscombinatoricsfactorizationnumber-theoryparallelpermutationprime-factorizationsprimesievegmpcpp

14.3 match 45 stars 10.04 score 153 scripts 12 dependents

revolutionanalytics

doParallel:Foreach Parallel Adaptor for the 'parallel' Package

Provides a parallel backend for the %dopar% function using the parallel package.

Maintained by Folashade Daniel. Last updated 3 years ago.

6.2 match 5 stars 14.56 score 50k scripts 1.4k dependents

tidyverse

purrr:Functional Programming Tools

A complete and consistent functional programming toolkit for R.

Maintained by Hadley Wickham. Last updated 1 months ago.

functional-programming

4.0 match 1.3k stars 22.12 score 59k scripts 6.9k dependents

mrc-ide

hipercow:High Performance Computing

Set up cluster environments and jobs. Moo.

Maintained by Rich FitzJohn. Last updated 10 days ago.

12.4 match 1 stars 6.53 score 45 scripts 1 dependents

ropensci

stplanr:Sustainable Transport Planning

Tools for transport planning with an emphasis on spatial transport data and non-motorized modes. The package was originally developed to support the 'Propensity to Cycle Tool', a publicly available strategic cycle network planning tool (Lovelace et al. 2017) <doi:10.5198/jtlu.2016.862>, but has since been extended to support public transport routing and accessibility analysis (Moreno-Monroy et al. 2017) <doi:10.1016/j.jtrangeo.2017.08.012> and routing with locally hosted routing engines such as 'OSRM' (Lowans et al. 2023) <doi:10.1016/j.enconman.2023.117337>. The main functions are for creating and manipulating geographic "desire lines" from origin-destination (OD) data (building on the 'od' package); calculating routes on the transport network locally and via interfaces to routing services such as <https://cyclestreets.net/> (Desjardins et al. 2021) <doi:10.1007/s11116-021-10197-1>; and calculating route segment attributes such as bearing. The package implements the 'travel flow aggregration' method described in Morgan and Lovelace (2020) <doi:10.1177/2399808320942779> and the 'OD jittering' method described in Lovelace et al. (2022) <doi:10.32866/001c.33873>. Further information on the package's aim and scope can be found in the vignettes and in a paper in the R Journal (Lovelace and Ellison 2018) <doi:10.32614/RJ-2018-053>, and in a paper outlining the landscape of open source software for geographic methods in transport planning (Lovelace, 2021) <doi:10.1007/s10109-020-00342-2>.

Maintained by Robin Lovelace. Last updated 7 months ago.

cyclecyclingdesire-linesorigin-destinationpeer-reviewedpubic-transportroute-networkroutesroutingspatialtransporttransport-planningtransportationwalking

5.7 match 427 stars 12.31 score 684 scripts 3 dependents

vlarmet

cppRouting:Algorithms for Routing and Solving the Traffic Assignment Problem

Calculation of distances, shortest paths and isochrones on weighted graphs using several variants of Dijkstra algorithm. Proposed algorithms are unidirectional Dijkstra (Dijkstra, E. W. (1959) <doi:10.1007/BF01386390>), bidirectional Dijkstra (Goldberg, Andrew & Fonseca F. Werneck, Renato (2005) <https://archive.siam.org/meetings/alenex05/papers/03agoldberg.pdf>), A* search (P. E. Hart, N. J. Nilsson et B. Raphael (1968) <doi:10.1109/TSSC.1968.300136>), new bidirectional A* (Pijls & Post (2009) <https://repub.eur.nl/pub/16100/ei2009-10.pdf>), Contraction hierarchies (R. Geisberger, P. Sanders, D. Schultes and D. Delling (2008) <doi:10.1007/978-3-540-68552-4_24>), PHAST (D. Delling, A.Goldberg, A. Nowatzyk, R. Werneck (2011) <doi:10.1016/j.jpdc.2012.02.007>). Algorithms for solving the traffic assignment problem are All-or-Nothing assignment, Method of Successive Averages, Frank-Wolfe algorithm (M. Fukushima (1984) <doi:10.1016/0191-2615(84)90029-8>), Conjugate and Bi-Conjugate Frank-Wolfe algorithms (M. Mitradjieva, P. O. Lindberg (2012) <doi:10.1287/trsc.1120.0409>), Algorithm-B (R. B. Dial (2006) <doi:10.1016/j.trb.2006.02.008>).

Maintained by Vincent Larmet. Last updated 9 months ago.

algorithmalgorithm-bbidirectional-a-star-algorithmc-plus-pluscontraction-hierarchiesdijkstra-algorithmdistancefrank-wolfeisochronesparallel-computingrcppshortest-pathstraffic-assignmentcpp

7.5 match 112 stars 7.42 score 39 scripts 4 dependents

beccadaniel

doMC:Foreach Parallel Adaptor for 'parallel'

Provides a parallel backend for the %dopar% function using the multicore functionality of the parallel package.

Maintained by Folashade Daniel. Last updated 3 years ago.

6.5 match 7.39 score 10k scripts 2 dependents

braverock

PortfolioAnalytics:Portfolio Analysis, Including Numerical Methods for Optimization of Portfolios

Portfolio optimization and analysis routines and graphics.

Maintained by Brian G. Peterson. Last updated 3 months ago.

3.7 match 81 stars 11.49 score 626 scripts 2 dependents

futureverse

future.tools:Tools for Working with Futures

Tools for Working with Futures.

Maintained by Henrik Bengtsson. Last updated 9 months ago.

parallel-computingparallel-programming

15.0 match 2 stars 2.60 score

martynplummer

rjags:Bayesian Graphical Models using MCMC

Interface to the JAGS MCMC library.

Maintained by Martyn Plummer. Last updated 7 months ago.

jagscpp

4.0 match 7 stars 9.48 score 4.0k scripts 165 dependents

heike

ggparallel:Variations of Parallel Coordinate Plots for Categorical Data

Create hammock plots, parallel sets, and common angle plots with 'ggplot2'.

Maintained by Heike Hofmann. Last updated 1 years ago.

7.1 match 41 stars 5.32 score 51 scripts

prioritizr

prioritizr:Systematic Conservation Prioritization in R

Systematic conservation prioritization using mixed integer linear programming (MILP). It provides a flexible interface for building and solving conservation planning problems. Once built, conservation planning problems can be solved using a variety of commercial and open-source exact algorithm solvers. By using exact algorithm solvers, solutions can be generated that are guaranteed to be optimal (or within a pre-specified optimality gap). Furthermore, conservation problems can be constructed to optimize the spatial allocation of different management actions or zones, meaning that conservation practitioners can identify solutions that benefit multiple stakeholders. To solve large-scale or complex conservation planning problems, users should install the Gurobi optimization software (available from <https://www.gurobi.com/>) and the 'gurobi' R package (see Gurobi Installation Guide vignette for details). Users can also install the IBM CPLEX software (<https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer>) and the 'cplexAPI' R package (available at <https://github.com/cran/cplexAPI>). Additionally, the 'rcbc' R package (available at <https://github.com/dirkschumacher/rcbc>) can be used to generate solutions using the CBC optimization software (<https://github.com/coin-or/Cbc>). For further details, see Hanson et al. (2025) <doi:10.1111/cobi.14376>.

Maintained by Richard Schuster. Last updated 10 days ago.

biodiversityconservationconservation-planneroptimizationprioritizationsolverspatialcpp

3.0 match 124 stars 11.82 score 584 scripts 2 dependents

r-spatial

spdep:Spatial Dependence: Weighting Schemes, Statistics

A collection of functions to create spatial weights matrix objects from polygon 'contiguities', from point patterns by distance and tessellations, for summarizing these objects, and for permitting their use in spatial data analysis, including regional aggregation by minimum spanning tree; a collection of tests for spatial 'autocorrelation', including global 'Morans I' and 'Gearys C' proposed by 'Cliff' and 'Ord' (1973, ISBN: 0850860369) and (1981, ISBN: 0850860814), 'Hubert/Mantel' general cross product statistic, Empirical Bayes estimates and 'Assunção/Reis' (1999) <doi:10.1002/(SICI)1097-0258(19990830)18:16%3C2147::AID-SIM179%3E3.0.CO;2-I> Index, 'Getis/Ord' G ('Getis' and 'Ord' 1992) <doi:10.1111/j.1538-4632.1992.tb00261.x> and multicoloured join count statistics, 'APLE' ('Li 'et al.' ) <doi:10.1111/j.1538-4632.2007.00708.x>, local 'Moran's I', 'Gearys C' ('Anselin' 1995) <doi:10.1111/j.1538-4632.1995.tb00338.x> and 'Getis/Ord' G ('Ord' and 'Getis' 1995) <doi:10.1111/j.1538-4632.1995.tb00912.x>, 'saddlepoint' approximations ('Tiefelsdorf' 2002) <doi:10.1111/j.1538-4632.2002.tb01084.x> and exact tests for global and local 'Moran's I' ('Bivand et al.' 2009) <doi:10.1016/j.csda.2008.07.021> and 'LOSH' local indicators of spatial heteroscedasticity ('Ord' and 'Getis') <doi:10.1007/s00168-011-0492-y>. The implementation of most of these measures is described in 'Bivand' and 'Wong' (2018) <doi:10.1007/s11749-018-0599-x>, with further extensions in 'Bivand' (2022) <doi:10.1111/gean.12319>. 'Lagrange' multiplier tests for spatial dependence in linear models are provided ('Anselin et al'. 1996) <doi:10.1016/0166-0462(95)02111-6>, as are 'Rao' score tests for hypothesised spatial 'Durbin' models based on linear models ('Koley' and 'Bera' 2023) <doi:10.1080/17421772.2023.2256810>. A local indicators for categorical data (LICD) implementation based on 'Carrer et al.' (2021) <doi:10.1016/j.jas.2020.105306> and 'Bivand et al.' (2017) <doi:10.1016/j.spasta.2017.03.003> was added in 1.3-7. From 'spdep' and 'spatialreg' versions >= 1.2-1, the model fitting functions previously present in this package are defunct in 'spdep' and may be found in 'spatialreg'.

Maintained by Roger Bivand. Last updated 17 days ago.

spatial-autocorrelationspatial-dependencespatial-weights

2.0 match 131 stars 16.62 score 6.0k scripts 107 dependents

branchlab

metasnf:Meta Clustering with Similarity Network Fusion

Framework to facilitate patient subtyping with similarity network fusion and meta clustering. The similarity network fusion (SNF) algorithm was introduced by Wang et al. (2014) in <doi:10.1038/nmeth.2810>. SNF is a data integration approach that can transform high-dimensional and diverse data types into a single similarity network suitable for clustering with minimal loss of information from each initial data source. The meta clustering approach was introduced by Caruana et al. (2006) in <doi:10.1109/ICDM.2006.103>. Meta clustering involves generating a wide range of cluster solutions by adjusting clustering hyperparameters, then clustering the solutions themselves into a manageable number of qualitatively similar solutions, and finally characterizing representative solutions to find ones that are best for the user's specific context. This package provides a framework to easily transform multi-modal data into a wide range of similarity network fusion-derived cluster solutions as well as to visualize, characterize, and validate those solutions. Core package functionality includes easy customization of distance metrics, clustering algorithms, and SNF hyperparameters to generate diverse clustering solutions; calculation and plotting of associations between features, between patients, and between cluster solutions; and standard cluster validation approaches including resampled measures of cluster stability, standard metrics of cluster quality, and label propagation to evaluate generalizability in unseen data. Associated vignettes guide the user through using the package to identify patient subtypes while adhering to best practices for unsupervised learning.

Maintained by Prashanth S Velayudhan. Last updated 3 days ago.

bioinformaticsclusteringmetaclusteringsnf

3.8 match 8 stars 8.21 score 30 scripts

r-forge

tm:Text Mining Package

A framework for text mining applications within R.

Maintained by Kurt Hornik. Last updated 24 days ago.

cpp

2.3 match 12.96 score 14k scripts 101 dependents

beccadaniel

doSNOW:Foreach Parallel Adaptor for the 'snow' Package

Provides a parallel backend for the %dopar% function using the snow package of Tierney, Rossini, Li, and Sevcikova.

Maintained by Folashade Daniel. Last updated 3 years ago.

3.5 match 1 stars 7.88 score 2.6k scripts 98 dependents