Showing 200 of total 452 results (show query)

plant-functional-trait-course

traitstrap:Bootstrap Trait Values to Calculate Moments

Calculates trait moments from trait and community data using the methods developed in Maitner et al (2021) <doi:10.22541/au.162196147.76797968/v1>.

Maintained by Richard James Telford. Last updated 9 months ago.

41.0 match 12 stars 5.83 score 28 scripts

ikwak2

aSPU:Adaptive Sum of Powered Score Test

R codes for the (adaptive) Sum of Powered Score ('SPU' and 'aSPU') tests, inverse variance weighted Sum of Powered score ('SPUw' and 'aSPUw') tests and gene-based and some pathway based association tests (Pathway based Sum of Powered Score tests ('SPUpath'), adaptive 'SPUpath' ('aSPUpath') test, 'GEEaSPU' test for multiple traits - single 'SNP' (single nucleotide polymorphism) association in generalized estimation equations, 'MTaSPUs' test for multiple traits - single 'SNP' association with Genome Wide Association Studies ('GWAS') summary statistics, Gene-based Association Test that uses an extended 'Simes' procedure ('GATES'), Hybrid Set-based Test ('HYST') and extended version of 'GATES' test for pathway-based association testing ('GATES-Simes'). ). The tests can be used with genetic and other data sets with covariates. The response variable is binary or quantitative. Summary; (1) Single trait-'SNP' set association with individual-level data ('aSPU', 'aSPUw', 'aSPUr'), (2) Single trait-'SNP' set association with summary statistics ('aSPUs'), (3) Single trait-pathway association with individual-level data ('aSPUpath'), (4) Single trait-pathway association with summary statistics ('aSPUsPath'), (5) Multiple traits-single 'SNP' association with individual-level data ('GEEaSPU'), (6) Multiple traits- single 'SNP' association with summary statistics ('MTaSPUs'), (7) Multiple traits-'SNP' set association with summary statistics('MTaSPUsSet'), (8) Multiple traits-pathway association with summary statistics('MTaSPUsSetPath').

Maintained by Il-Youp Kwak. Last updated 4 years ago.

31.1 match 12 stars 7.18 score 42 scripts 1 dependents

nepem-ufsc

metan:Multi Environment Trials Analysis

Performs stability analysis of multi-environment trial data using parametric and non-parametric methods. Parametric methods includes Additive Main Effects and Multiplicative Interaction (AMMI) analysis by Gauch (2013) <doi:10.2135/cropsci2013.04.0241>, Ecovalence by Wricke (1965), Genotype plus Genotype-Environment (GGE) biplot analysis by Yan & Kang (2003) <doi:10.1201/9781420040371>, geometric adaptability index by Mohammadi & Amri (2008) <doi:10.1007/s10681-007-9600-6>, joint regression analysis by Eberhart & Russel (1966) <doi:10.2135/cropsci1966.0011183X000600010011x>, genotypic confidence index by Annicchiarico (1992), Murakami & Cruz's (2004) method, power law residuals (POLAR) statistics by Doring et al. (2015) <doi:10.1016/j.fcr.2015.08.005>, scale-adjusted coefficient of variation by Doring & Reckling (2018) <doi:10.1016/j.eja.2018.06.007>, stability variance by Shukla (1972) <doi:10.1038/hdy.1972.87>, weighted average of absolute scores by Olivoto et al. (2019a) <doi:10.2134/agronj2019.03.0220>, and multi-trait stability index by Olivoto et al. (2019b) <doi:10.2134/agronj2019.03.0221>. Non-parametric methods includes superiority index by Lin & Binns (1988) <doi:10.4141/cjps88-018>, nonparametric measures of phenotypic stability by Huehn (1990) <doi:10.1007/BF00024241>, TOP third statistic by Fox et al. (1990) <doi:10.1007/BF00040364>. Functions for computing biometrical analysis such as path analysis, canonical correlation, partial correlation, clustering analysis, and tools for inspecting, manipulating, summarizing and plotting typical multi-environment trial data are also provided.

Maintained by Tiago Olivoto. Last updated 9 days ago.

18.3 match 2 stars 9.48 score 1.3k scripts 2 dependents

lcrawlab

mvMAPIT:Multivariate Genome Wide Marginal Epistasis Test

Epistasis, commonly defined as the interaction between genetic loci, is known to play an important role in the phenotypic variation of complex traits. As a result, many statistical methods have been developed to identify genetic variants that are involved in epistasis, and nearly all of these approaches carry out this task by focusing on analyzing one trait at a time. Previous studies have shown that jointly modeling multiple phenotypes can often dramatically increase statistical power for association mapping. In this package, we present the 'multivariate MArginal ePIstasis Test' ('mvMAPIT') – a multi-outcome generalization of a recently proposed epistatic detection method which seeks to detect marginal epistasis or the combined pairwise interaction effects between a given variant and all other variants. By searching for marginal epistatic effects, one can identify genetic variants that are involved in epistasis without the need to identify the exact partners with which the variants interact – thus, potentially alleviating much of the statistical and computational burden associated with conventional explicit search based methods. Our proposed 'mvMAPIT' builds upon this strategy by taking advantage of correlation structure between traits to improve the identification of variants involved in epistasis. We formulate 'mvMAPIT' as a multivariate linear mixed model and develop a multi-trait variance component estimation algorithm for efficient parameter inference and P-value computation. Together with reasonable model approximations, our proposed approach is scalable to moderately sized genome-wide association studies. Crawford et al. (2017) <doi:10.1371/journal.pgen.1006869>. Stamp et al. (2023) <doi:10.1093/g3journal/jkad118>.

Maintained by Julian Stamp. Last updated 5 months ago.

cppepistasisepistasis-analysisgwasgwas-toolslinear-mixed-modelsmapitmvmapitvariance-componentsopenblascppopenmp

20.7 match 11 stars 6.90 score 17 scripts 1 dependents

bioc

gwascat:representing and modeling data in the EMBL-EBI GWAS catalog

Represent and model data in the EMBL-EBI GWAS catalog.

Maintained by VJ Carey. Last updated 5 months ago.

genetics

21.7 match 6.05 score 110 scripts 2 dependents

dwbapst

paleotree:Paleontological and Phylogenetic Analyses of Evolution

Provides tools for transforming, a posteriori time-scaling, and modifying phylogenies containing extinct (i.e. fossil) lineages. In particular, most users are interested in the functions timePaleoPhy, bin_timePaleoPhy, cal3TimePaleoPhy and bin_cal3TimePaleoPhy, which date cladograms of fossil taxa using stratigraphic data. This package also contains a large number of likelihood functions for estimating sampling and diversification rates from different types of data available from the fossil record (e.g. range data, occurrence data, etc). paleotree users can also simulate diversification and sampling in the fossil record using the function simFossilRecord, which is a detailed simulator for branching birth-death-sampling processes composed of discrete taxonomic units arranged in ancestor-descendant relationships. Users can use simFossilRecord to simulate diversification in incompletely sampled fossil records, under various models of morphological differentiation (i.e. the various patterns by which morphotaxa originate from one another), and with time-dependent, longevity-dependent and/or diversity-dependent rates of diversification, extinction and sampling. Additional functions allow users to translate simulated ancestor-descendant data from simFossilRecord into standard time-scaled phylogenies or unscaled cladograms that reflect the relationships among taxon units.

Maintained by David W. Bapst. Last updated 8 months ago.

15.2 match 21 stars 7.53 score 216 scripts 2 dependents

venelin

PCMBase:Simulation and Likelihood Calculation of Phylogenetic Comparative Models

Phylogenetic comparative methods represent models of continuous trait data associated with the tips of a phylogenetic tree. Examples of such models are Gaussian continuous time branching stochastic processes such as Brownian motion (BM) and Ornstein-Uhlenbeck (OU) processes, which regard the data at the tips of the tree as an observed (final) state of a Markov process starting from an initial state at the root and evolving along the branches of the tree. The PCMBase R package provides a general framework for manipulating such models. This framework consists of an application programming interface for specifying data and model parameters, and efficient algorithms for simulating trait evolution under a model and calculating the likelihood of model parameters for an assumed model and trait data. The package implements a growing collection of models, which currently includes BM, OU, BM/OU with jumps, two-speed OU as well as mixed Gaussian models, in which different types of the above models can be associated with different branches of the tree. The PCMBase package is limited to trait-simulation and likelihood calculation of (mixed) Gaussian phylogenetic models. The PCMFit package provides functionality for inference of these models to tree and trait data. The package web-site <https://venelin.github.io/PCMBase/> provides access to the documentation and other resources.

Maintained by Venelin Mitov. Last updated 10 months ago.

11.4 match 6 stars 7.56 score 85 scripts 3 dependents

melff

RKernel:Yet another R kernel for Jupyter

Provides a kernel for Jupyter.

Maintained by Martin Elff. Last updated 14 days ago.

jupyterjupyter-kerneljupyter-kernelsjupyter-notebook

16.5 match 38 stars 4.60 score

neon-biodiversity

Ostats:O-Stats, or Pairwise Community-Level Niche Overlap Statistics

O-statistics, or overlap statistics, measure the degree of community-level trait overlap. They are estimated by fitting nonparametric kernel density functions to each species’ trait distribution and calculating their areas of overlap. For instance, the median pairwise overlap for a community is calculated by first determining the overlap of each species pair in trait space, and then taking the median overlap of each species pair in a community. This median overlap value is called the O-statistic (O for overlap). The Ostats() function calculates separate univariate overlap statistics for each trait, while the Ostats_multivariate() function calculates a single multivariate overlap statistic for all traits. O-statistics can be evaluated against null models to obtain standardized effect sizes. 'Ostats' is part of the collaborative Macrosystems Biodiversity Project "Local- to continental-scale drivers of biodiversity across the National Ecological Observatory Network (NEON)." For more information on this project, see the Macrosystems Biodiversity Website (<https://neon-biodiversity.github.io/>). Calculation of O-statistics is described in Read et al. (2018) <doi:10.1111/ecog.03641>, and a teaching module for introducing the underlying biological concepts at an undergraduate level is described in Grady et al. (2018) <http://tiee.esa.org/vol/v14/issues/figure_sets/grady/abstract.html>.

Maintained by Quentin D. Read. Last updated 4 months ago.

ecology

10.9 match 7 stars 6.69 score 28 scripts

lukejharmon

geiger:Analysis of Evolutionary Diversification

Methods for fitting macroevolutionary models to phylogenetic trees Pennell (2014) <doi:10.1093/bioinformatics/btu181>.

Maintained by Luke Harmon. Last updated 2 years ago.

openblascpp

5.0 match 1 stars 7.84 score 2.3k scripts 28 dependents

cran

BGLR:Bayesian Generalized Linear Regression

Bayesian Generalized Linear Regression.

Maintained by Paulino Perez Rodriguez. Last updated 5 months ago.

openblas

7.4 match 2 stars 5.18 score 5 dependents

tspsyched

autoFC:Automatic Construction of Forced-Choice Tests

Forced-choice (FC) response has gained increasing popularity and interest for its resistance to faking when well-designed (Cao & Drasgow, 2019 <doi:10.1037/apl0000414>). To established well-designed FC scales, typically each item within a block should measure different trait and have similar level of social desirability (Zhang et al., 2020 <doi:10.1177/1094428119836486>). Recent study also suggests the importance of high inter-item agreement of social desirability between items within a block (Pavlov et al., 2021 <doi:10.31234/osf.io/hmnrc>). In addition to this, FC developers may also need to maximize factor loading differences (Brown & Maydeu-Olivares, 2011 <doi:10.1177/0013164410375112>) or minimize item location differences (Cao & Drasgow, 2019 <doi:10.1037/apl0000414>) depending on scoring models. Decision of which items should be assigned to the same block, termed item pairing, is thus critical to the quality of an FC test. This pairing process is essentially an optimization process which is currently carried out manually. However, given that we often need to simultaneously meet multiple objectives, manual pairing becomes impractical or even not feasible once the number of latent traits and/or number of items per trait are relatively large. To address these problems, autoFC is developed as a practical tool for facilitating the automatic construction of FC tests (Li et al., 2022 <doi:10.1177/01466216211051726>), essentially exempting users from the burden of manual item pairing and reducing the computational costs and biases induced by simple ranking methods. Given characteristics of each item (and item responses), FC tests can be automatically constructed based on user-defined pairing criteria and weights as well as customized optimization behavior. Users can also construct parallel forms of the same test following the same pairing rules.

Maintained by Mengtong Li. Last updated 4 days ago.

5.2 match 4 stars 4.90 score 3 scripts

zankrut20

selection.index:Analysis of Selection Index in Plant Breeding

The aim of most plant breeding programmes is simultaneous improvement of several characters. An objective method involving simultaneous selection for several attributes then becomes necessary. It has been recognised that most rapid improvements in the economic value is expected from selection applied simultaneously to all the characters which determine the economic value of a plant, and appropriate assigned weights to each character according to their economic importance, heritability and correlations between characters. So the selection for economic value is a complex matter. If the component characters are combined together into an index in such a way that when selection is applied to the index, as if index is the character to be improved, most rapid improvement of economic value is expected. Such an index was first proposed by Smith (1937 <doi:10.1111/j.1469-1809.1936.tb02143.x>) based on the Fisher's (1936 <doi:10.1111/j.1469-1809.1936.tb02137.x>) "discriminant function" Dabholkar (1999 <https://books.google.co.in/books?id=mlFtumAXQ0oC&lpg=PA4&ots=Xgxp1qLuxS&dq=elements%20of%20biometrical%20genetics&lr&pg=PP1#v=onepage&q&f=false>). In this package selection index is calculated based on the Smith (1937) selection index method.

Maintained by Zankrut Goyani. Last updated 5 months ago.

agricultureanimal-scienceplant-breedingrstudioselection-indexselection-indicessmith-selection-index

5.1 match 2 stars 4.00 score 5 scripts

fmichonneau

phylobase:Base Package for Phylogenetic Structures and Comparative Data

Provides a base S4 class for comparative methods, incorporating one or more trees and trait data.

Maintained by Francois Michonneau. Last updated 1 years ago.

phylogeneticscpp

1.7 match 18 stars 11.14 score 394 scripts 18 dependents