Showing 200 of total 2317 results (show query)
mmaechler
cluster:"Finding Groups in Data": Cluster Analysis Extended Rousseeuw et al.
Methods for Cluster analysis. Much extended the original from Peter Rousseeuw, Anja Struyf and Mia Hubert, based on Kaufman and Rousseeuw (1990) "Finding Groups in Data".
Maintained by Martin Maechler. Last updated 4 days ago.
94.9 match 3 stars 11.98 score 14k scripts 2.2k dependentsbioc
clusterExperiment:Compare Clusterings for Single-Cell Sequencing
Provides functionality for running and comparing many different clusterings of single-cell sequencing data or other large mRNA Expression data sets.
Maintained by Elizabeth Purdom. Last updated 5 months ago.
clusteringrnaseqsequencingsoftwaresinglecellcpp
105.5 match 39 stars 9.63 score 192 scripts 1 dependentschrhennig
fpc:Flexible Procedures for Clustering
Various methods for clustering and cluster validation. Fixed point clustering. Linear regression clustering. Clustering by merging Gaussian mixture components. Symmetric and asymmetric discriminant projections for visualisation of the separation of groupings. Cluster validation statistics for distance based clustering including corrected Rand index. Standardisation of cluster validation statistics by random clusterings and comparison between many clustering methods and numbers of clusters based on this. Cluster-wise cluster stability assessment. Methods for estimation of the number of clusters: Calinski-Harabasz, Tibshirani and Walther's prediction strength, Fang and Wang's bootstrap stability. Gaussian/multinomial mixture fitting for mixed continuous/categorical variables. Variable-wise statistics for cluster interpretation. DBSCAN clustering. Interface functions for many clustering methods implemented in R, including estimating the number of clusters with kmeans, pam and clara. Modality diagnosis for Gaussian mixtures. For an overview see package?fpc.
Maintained by Christian Hennig. Last updated 6 months ago.
85.0 match 11 stars 9.25 score 2.6k scripts 70 dependentsmlr-org
mlr3cluster:Cluster Extension for 'mlr3'
Extends the 'mlr3' package with cluster analysis.
Maintained by Maximilian Mücke. Last updated 26 days ago.
cluster-analysisclusteringmlr3
87.4 match 23 stars 8.21 score 50 scripts 2 dependentsbioc
bluster:Clustering Algorithms for Bioconductor
Wraps common clustering algorithms in an easily extended S4 framework. Backends are implemented for hierarchical, k-means and graph-based clustering. Several utilities are also provided to compare and evaluate clustering results.
Maintained by Aaron Lun. Last updated 5 months ago.
immunooncologysoftwaregeneexpressiontranscriptomicssinglecellclusteringcpp
73.4 match 9.43 score 636 scripts 51 dependentsmhahsler
dbscan:Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Related Algorithms
A fast reimplementation of several density-based algorithms of the DBSCAN family. Includes the clustering algorithms DBSCAN (density-based spatial clustering of applications with noise) and HDBSCAN (hierarchical DBSCAN), the ordering algorithm OPTICS (ordering points to identify the clustering structure), shared nearest neighbor clustering, and the outlier detection algorithms LOF (local outlier factor) and GLOSH (global-local outlier score from hierarchies). The implementations use the kd-tree data structure (from library ANN) for faster k-nearest neighbor search. An R interface to fast kNN and fixed-radius NN search is also provided. Hahsler, Piekenbrock and Doran (2019) <doi:10.18637/jss.v091.i01>.
Maintained by Michael Hahsler. Last updated 2 months ago.
clusteringdbscandensity-based-clusteringhdbscanlofopticscpp
42.7 match 321 stars 15.62 score 1.6k scripts 84 dependentsbranchlab
metasnf:Meta Clustering with Similarity Network Fusion
Framework to facilitate patient subtyping with similarity network fusion and meta clustering. The similarity network fusion (SNF) algorithm was introduced by Wang et al. (2014) in <doi:10.1038/nmeth.2810>. SNF is a data integration approach that can transform high-dimensional and diverse data types into a single similarity network suitable for clustering with minimal loss of information from each initial data source. The meta clustering approach was introduced by Caruana et al. (2006) in <doi:10.1109/ICDM.2006.103>. Meta clustering involves generating a wide range of cluster solutions by adjusting clustering hyperparameters, then clustering the solutions themselves into a manageable number of qualitatively similar solutions, and finally characterizing representative solutions to find ones that are best for the user's specific context. This package provides a framework to easily transform multi-modal data into a wide range of similarity network fusion-derived cluster solutions as well as to visualize, characterize, and validate those solutions. Core package functionality includes easy customization of distance metrics, clustering algorithms, and SNF hyperparameters to generate diverse clustering solutions; calculation and plotting of associations between features, between patients, and between cluster solutions; and standard cluster validation approaches including resampled measures of cluster stability, standard metrics of cluster quality, and label propagation to evaluate generalizability in unseen data. Associated vignettes guide the user through using the package to identify patient subtypes while adhering to best practices for unsupervised learning.
Maintained by Prashanth S Velayudhan. Last updated 4 days ago.
bioinformaticsclusteringmetaclusteringsnf
74.0 match 8 stars 8.21 score 30 scriptsphilips-software
latrend:A Framework for Clustering Longitudinal Data
A framework for clustering longitudinal datasets in a standardized way. The package provides an interface to existing R packages for clustering longitudinal univariate trajectories, facilitating reproducible and transparent analyses. Additionally, standard tools are provided to support cluster analyses, including repeated estimation, model validation, and model assessment. The interface enables users to compare results between methods, and to implement and evaluate new methods with ease. The 'akmedoids' package is available from <https://github.com/MAnalytics/akmedoids>.
Maintained by Niek Den Teuling. Last updated 2 months ago.
cluster-analysisclustering-evaluationclustering-methodsdata-sciencelongitudinal-clusteringlongitudinal-datamixture-modelstime-series-analysis
85.9 match 30 stars 6.77 score 26 scriptsmhahsler
stream:Infrastructure for Data Stream Mining
A framework for data stream modeling and associated data mining tasks such as clustering and classification. The development of this package was supported in part by NSF IIS-0948893, NSF CMMI 1728612, and NIH R21HG005912. Hahsler et al (2017) <doi:10.18637/jss.v076.i14>.
Maintained by Michael Hahsler. Last updated 4 days ago.
data-stream-clusteringdatastreamstream-miningcpp
53.3 match 39 stars 10.05 score 132 scripts 3 dependentsluca-scr
mclust:Gaussian Mixture Modelling for Model-Based Clustering, Classification, and Density Estimation
Gaussian finite mixture models fitted via EM algorithm for model-based clustering, classification, and density estimation, including Bayesian regularization, dimension reduction for visualisation, and resampling-based inference.
Maintained by Luca Scrucca. Last updated 11 months ago.
42.6 match 21 stars 12.23 score 6.6k scripts 587 dependentsspatstat
spatstat.model:Parametric Statistical Modelling and Inference for the 'spatstat' Family
Functionality for parametric statistical modelling and inference for spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Supports parametric modelling, formal statistical inference, and model validation. Parametric models include Poisson point processes, Cox point processes, Neyman-Scott cluster processes, Gibbs point processes and determinantal point processes. Models can be fitted to data using maximum likelihood, maximum pseudolikelihood, maximum composite likelihood and the method of minimum contrast. Fitted models can be simulated and predicted. Formal inference includes hypothesis tests (quadrat counting tests, Cressie-Read tests, Clark-Evans test, Berman test, Diggle-Cressie-Loosmore-Ford test, scan test, studentised permutation test, segregation test, ANOVA tests of fitted models, adjusted composite likelihood ratio test, envelope tests, Dao-Genton test, balanced independent two-stage test), confidence intervals for parameters, and prediction intervals for point counts. Model validation techniques include leverage, influence, partial residuals, added variable plots, diagnostic plots, pseudoscore residual plots, model compensators and Q-Q plots.
Maintained by Adrian Baddeley. Last updated 7 days ago.
analysis-of-variancecluster-processconfidence-intervalscox-processdeterminantal-point-processesgibbs-processinfluenceleveragemodel-diagnosticsneyman-scottparameter-estimationpoisson-processspatial-analysisspatial-modellingspatial-point-processesstatistical-inference
55.6 match 5 stars 9.09 score 6 scripts 46 dependentstalgalili
dendextend:Extending 'dendrogram' Functionality in R
Offers a set of functions for extending 'dendrogram' objects in R, letting you visualize and compare trees of 'hierarchical clusterings'. You can (1) Adjust a tree's graphical parameters - the color, size, type, etc of its branches, nodes and labels. (2) Visually and statistically compare different 'dendrograms' to one another.
Maintained by Tal Galili. Last updated 2 months ago.
28.6 match 154 stars 17.02 score 6.0k scripts 164 dependentsasardaes
dtwclust:Time Series Clustering Along with Optimizations for the Dynamic Time Warping Distance
Time series clustering along with optimized techniques related to the Dynamic Time Warping distance and its corresponding lower bounds. Implementations of partitional, hierarchical, fuzzy, k-Shape and TADPole clustering are available. Functionality can be easily extended with custom distance measures and centroid definitions. Implementations of DTW barycenter averaging, a distance based on global alignment kernels, and the soft-DTW distance and centroid routines are also provided. All included distance functions have custom loops optimized for the calculation of cross-distance matrices, including parallelization support. Several cluster validity indices are included.
Maintained by Alexis Sarda. Last updated 8 months ago.
clusteringdtwtime-seriesopenblascpp
39.0 match 261 stars 12.39 score 406 scripts 14 dependentsokgreece
Cluster.OBeu:Cluster Analysis 'OpenBudgets.eu'
Estimate and return the needed parameters for visualisations designed for 'OpenBudgets' <http://openbudgets.eu/> data. Calculate cluster analysis measures in Budget data of municipalities across Europe, according to the 'OpenBudgets' data model. It involves a set of techniques and algorithms used to find and divide the data into groups of similar observations. Also, can be used generally to extract visualisation parameters convert them to 'JSON' format and use them as input in a different graphical interface.
Maintained by Kleanthis Koupidis. Last updated 4 years ago.
clustercluster-analysisclustering-algorithmclustering-measuresestimate-clustering-parametersobeuopen-budgetsopenbudgets
101.0 match 2 stars 4.75 score 14 scriptsbioc
CATALYST:Cytometry dATa anALYSis Tools
CATALYST provides tools for preprocessing of and differential discovery in cytometry data such as FACS, CyTOF, and IMC. Preprocessing includes i) normalization using bead standards, ii) single-cell deconvolution, and iii) bead-based compensation. For differential discovery, the package provides a number of convenient functions for data processing (e.g., clustering, dimension reduction), as well as a suite of visualizations for exploratory data analysis and exploration of results from differential abundance (DA) and state (DS) analysis in order to identify differences in composition and expression profiles at the subpopulation-level, respectively.
Maintained by Helena L. Crowell. Last updated 4 months ago.
clusteringdataimportdifferentialexpressionexperimentaldesignflowcytometryimmunooncologymassspectrometrynormalizationpreprocessingsinglecellsoftwarestatisticalmethodvisualization
40.3 match 67 stars 11.06 score 362 scripts 2 dependentsbioc
tidytof:Analyze High-dimensional Cytometry Data Using Tidy Data Principles
This package implements an interactive, scientific analysis pipeline for high-dimensional cytometry data built using tidy data principles. It is specifically designed to play well with both the tidyverse and Bioconductor software ecosystems, with functionality for reading/writing data files, data cleaning, preprocessing, clustering, visualization, modeling, and other quality-of-life functions. tidytof implements a "grammar" of high-dimensional cytometry data analysis.
Maintained by Timothy Keyes. Last updated 5 months ago.
singlecellflowcytometrybioinformaticscytometrydata-sciencesingle-celltidyversecpp
60.7 match 19 stars 7.26 score 35 scriptslazappi
clustree:Visualise Clusterings at Different Resolutions
Deciding what resolution to use can be a difficult question when approaching a clustering analysis. One way to approach this problem is to look at how samples move as the number of clusters increases. This package allows you to produce clustering trees, a visualisation for interrogating clusterings as resolution increases.
Maintained by Luke Zappia. Last updated 1 years ago.
clusteringclustering-treesvisualisationvisualization
36.8 match 219 stars 11.40 score 1.9k scripts 5 dependentsbioc
clusterProfiler:A universal enrichment tool for interpreting omics data
This package supports functional characteristics of both coding and non-coding genomics data for thousands of species with up-to-date gene annotation. It provides a univeral interface for gene functional annotation from a variety of sources and thus can be applied in diverse scenarios. It provides a tidy interface to access, manipulate, and visualize enrichment results to help users achieve efficient data interpretation. Datasets obtained from multiple treatments and time points can be analyzed and compared in a single run, easily revealing functional consensus and differences among distinct conditions.
Maintained by Guangchuang Yu. Last updated 4 months ago.
annotationclusteringgenesetenrichmentgokeggmultiplecomparisonpathwaysreactomevisualizationenrichment-analysisgsea
23.4 match 1.1k stars 17.03 score 11k scripts 48 dependentsbioc
celda:CEllular Latent Dirichlet Allocation
Celda is a suite of Bayesian hierarchical models for clustering single-cell RNA-sequencing (scRNA-seq) data. It is able to perform "bi-clustering" and simultaneously cluster genes into gene modules and cells into cell subpopulations. It also contains DecontX, a novel Bayesian method to computationally estimate and remove RNA contamination in individual cells without empty droplet information. A variety of scRNA-seq data visualization functions is also included.
Maintained by Joshua Campbell. Last updated 27 days ago.
singlecellgeneexpressionclusteringsequencingbayesianimmunooncologydataimportcppopenmp
37.0 match 147 stars 10.47 score 256 scripts 2 dependentsbioc
clustifyr:Classifier for Single-cell RNA-seq Using Cell Clusters
Package designed to aid in classifying cells from single-cell RNA sequencing data using external reference data (e.g., bulk RNA-seq, scRNA-seq, microarray, gene lists). A variety of correlation based methods and gene list enrichment methods are provided to assist cell type assignment.
Maintained by Rui Fu. Last updated 5 months ago.
singlecellannotationsequencingmicroarraygeneexpressionassign-identitiesclustersmarker-genesrna-seqsingle-cell-rna-seq
40.2 match 119 stars 9.63 score 296 scriptsmatteo21q
jomo:Multilevel Joint Modelling Multiple Imputation
Similarly to Schafer's package 'pan', 'jomo' is a package for multilevel joint modelling multiple imputation (Carpenter and Kenward, 2013) <doi:10.1002/9781119942283>. Novel aspects of 'jomo' are the possibility of handling binary and categorical data through latent normal variables, the option to use cluster-specific covariance matrices and to impute compatibly with the substantive model.
Maintained by Matteo Quartagno. Last updated 3 years ago.
37.1 match 3 stars 9.58 score 126 scripts 154 dependentsgagolews
genieclust:Fast and Robust Hierarchical Clustering with Noise Points Detection
A retake on the Genie algorithm (Gagolewski, 2021 <DOI:10.1016/j.softx.2021.100722>), which is a robust hierarchical clustering method (Gagolewski, Bartoszuk, Cena, 2016 <DOI:10.1016/j.ins.2016.05.003>). It is now faster and more memory efficient; determining the whole cluster hierarchy for datasets of 10M points in low dimensional Euclidean spaces or 100K points in high-dimensional ones takes only a minute or so. Allows clustering with respect to mutual reachability distances so that it can act as a noise point detector or a robustified version of 'HDBSCAN*' (that is able to detect a predefined number of clusters and hence it does not dependent on the somewhat fragile 'eps' parameter). The package also features an implementation of inequality indices (e.g., Gini and Bonferroni), external cluster validity measures (e.g., the normalised clustering accuracy, the adjusted Rand index, the Fowlkes-Mallows index, and normalised mutual information), and internal cluster validity indices (e.g., the Calinski-Harabasz, Davies-Bouldin, Ball-Hall, Silhouette, and generalised Dunn indices). See also the 'Python' version of 'genieclust' available on 'PyPI', which supports sparse data, more metrics, and even larger datasets.
Maintained by Marek Gagolewski. Last updated 4 days ago.
cluster-analysisclusteringclustering-algorithmdata-analysisdata-miningdata-sciencegeniehdbscanhierarchical-clusteringhierarchical-clustering-algorithmmachine-learningmachine-learning-algorithmsmlpacknmslibpythonpython3sparsecppopenmp
48.5 match 61 stars 7.29 score 13 scripts 5 dependentsacabassi
coca:Cluster-of-Clusters Analysis
Contains the R functions needed to perform Cluster-Of-Clusters Analysis (COCA) and Consensus Clustering (CC). For further details please see Cabassi and Kirk (2020) <doi:10.1093/bioinformatics/btaa593>.
Maintained by Alessandra Cabassi. Last updated 5 years ago.
cluster-analysiscluster-of-clustersclusteringcocagenomicsintegrative-clusteringmulti-omics
70.1 match 6 stars 5.03 score 12 scripts 1 dependentsbioc
SC3:Single-Cell Consensus Clustering
A tool for unsupervised clustering and analysis of single cell RNA-Seq data.
Maintained by Vladimir Kiselev. Last updated 5 months ago.
immunooncologysinglecellsoftwareclassificationclusteringdimensionreductionsupportvectormachinernaseqvisualizationtranscriptomicsdatarepresentationguidifferentialexpressiontranscriptionbioconductor-packagehuman-cell-atlassingle-cell-rna-seqopenblascpp
34.9 match 122 stars 10.09 score 374 scripts 1 dependentsbioc
singleCellTK:Comprehensive and Interactive Analysis of Single Cell RNA-Seq Data
The Single Cell Toolkit (SCTK) in the singleCellTK package provides an interface to popular tools for importing, quality control, analysis, and visualization of single cell RNA-seq data. SCTK allows users to seamlessly integrate tools from various packages at different stages of the analysis workflow. A general "a la carte" workflow gives users the ability access to multiple methods for data importing, calculation of general QC metrics, doublet detection, ambient RNA estimation and removal, filtering, normalization, batch correction or integration, dimensionality reduction, 2-D embedding, clustering, marker detection, differential expression, cell type labeling, pathway analysis, and data exporting. Curated workflows can be used to run Seurat and Celda. Streamlined quality control can be performed on the command line using the SCTK-QC pipeline. Users can analyze their data using commands in the R console or by using an interactive Shiny Graphical User Interface (GUI). Specific analyses or entire workflows can be summarized and shared with comprehensive HTML reports generated by Rmarkdown. Additional documentation and vignettes can be found at camplab.net/sctk.
Maintained by Joshua David Campbell. Last updated 23 days ago.
singlecellgeneexpressiondifferentialexpressionalignmentclusteringimmunooncologybatcheffectnormalizationqualitycontroldataimportgui
32.9 match 181 stars 10.16 score 252 scriptsbioc
ComplexHeatmap:Make Complex Heatmaps
Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns. Here the ComplexHeatmap package provides a highly flexible way to arrange multiple heatmaps and supports various annotation graphics.
Maintained by Zuguang Gu. Last updated 5 months ago.
softwarevisualizationsequencingclusteringcomplex-heatmapsheatmap
19.4 match 1.3k stars 16.93 score 16k scripts 151 dependentsbioc
Mfuzz:Soft clustering of omics time series data
The Mfuzz package implements noise-robust soft clustering of omics time-series data, including transcriptomic, proteomic or metabolomic data. It is based on the use of c-means clustering. For convenience, it includes a graphical user interface.
Maintained by Matthias Futschik. Last updated 5 months ago.
microarrayclusteringtimecoursepreprocessingvisualization
42.4 match 7.64 score 338 scripts 4 dependentskkholst
mets:Analysis of Multivariate Event Times
Implementation of various statistical models for multivariate event history data <doi:10.1007/s10985-013-9244-x>. Including multivariate cumulative incidence models <doi:10.1002/sim.6016>, and bivariate random effects probit models (Liability models) <doi:10.1016/j.csda.2015.01.014>. Modern methods for survival analysis, including regression modelling (Cox, Fine-Gray, Ghosh-Lin, Binomial regression) with fast computation of influence functions.
Maintained by Klaus K. Holst. Last updated 2 days ago.
multivariate-time-to-eventsurvival-analysistime-to-eventfortranopenblascpp
23.5 match 14 stars 13.47 score 236 scripts 42 dependentsclugen
clugenr:Multidimensional Cluster Generation Using Support Lines
An implementation of the clugen algorithm for generating multidimensional clusters with arbitrary distributions. Each cluster is supported by a line segment, the position, orientation and length of which guide where the respective points are placed. This package is described in Fachada & de Andrade (2023) <doi:10.1016/j.knosys.2023.110836>.
Maintained by Nuno Fachada. Last updated 7 months ago.
multidimensional-clustersmultidimensional-datasynthetic-clusterssynthetic-data-generatorsynthetic-dataset-generation
57.9 match 5 stars 5.39 score 14 scriptsbioc
Banksy:Spatial transcriptomic clustering
Banksy is an R package that incorporates spatial information to cluster cells in a feature space (e.g. gene expression). To incorporate spatial information, BANKSY computes the mean neighborhood expression and azimuthal Gabor filters that capture gene expression gradients. These features are combined with the cell's own expression to embed cells in a neighbor-augmented product space which can then be clustered, allowing for accurate and spatially-aware cell typing and tissue domain segmentation.
Maintained by Joseph Lee. Last updated 12 days ago.
clusteringspatialsinglecellgeneexpressiondimensionreductionclustering-algorithmsingle-cell-omicsspatial-omics
34.3 match 90 stars 9.03 score 248 scriptsmlampros
ClusterR:Gaussian Mixture Models, K-Means, Mini-Batch-Kmeans, K-Medoids and Affinity Propagation Clustering
Gaussian mixture models, k-means, mini-batch-kmeans, k-medoids and affinity propagation clustering with the option to plot, validate, predict (new data) and estimate the optimal number of clusters. The package takes advantage of 'RcppArmadillo' to speed up the computationally intensive parts of the functions. For more information, see (i) "Clustering in an Object-Oriented Environment" by Anja Struyf, Mia Hubert, Peter Rousseeuw (1997), Journal of Statistical Software, <doi:10.18637/jss.v001.i04>; (ii) "Web-scale k-means clustering" by D. Sculley (2010), ACM Digital Library, <doi:10.1145/1772690.1772862>; (iii) "Armadillo: a template-based C++ library for linear algebra" by Sanderson et al (2016), The Journal of Open Source Software, <doi:10.21105/joss.00026>; (iv) "Clustering by Passing Messages Between Data Points" by Brendan J. Frey and Delbert Dueck, Science 16 Feb 2007: Vol. 315, Issue 5814, pp. 972-976, <doi:10.1126/science.1136800>.
Maintained by Lampros Mouselimis. Last updated 9 months ago.
affinity-propagationcpp11gmmkmeanskmedoids-clusteringmini-batch-kmeansrcpparmadilloopenblascppopenmp
27.7 match 84 stars 11.04 score 640 scripts 24 dependentsropensci
phylotaR:Automated Phylogenetic Sequence Cluster Identification from 'GenBank'
A pipeline for the identification, within taxonomic groups, of orthologous sequence clusters from 'GenBank' <https://www.ncbi.nlm.nih.gov/genbank/> as the first step in a phylogenetic analysis. The pipeline depends on a local alignment search tool and is, therefore, not dependent on differences in gene naming conventions and naming errors.
Maintained by Shixiang Wang. Last updated 8 months ago.
blastngenbankpeer-reviewedphylogeneticssequence-alignment
51.8 match 23 stars 5.86 score 156 scriptsbioc
genefu:Computation of Gene Expression-Based Signatures in Breast Cancer
This package contains functions implementing various tasks usually required by gene expression analysis, especially in breast cancer studies: gene mapping between different microarray platforms, identification of molecular subtypes, implementation of published gene signatures, gene selection, and survival analysis.
Maintained by Benjamin Haibe-Kains. Last updated 4 months ago.
differentialexpressiongeneexpressionvisualizationclusteringclassification
40.4 match 7.42 score 193 scripts 3 dependentss3alfisc
fwildclusterboot:Fast Wild Cluster Bootstrap Inference for Linear Models
Implementation of fast algorithms for wild cluster bootstrap inference developed in 'Roodman et al' (2019, 'STATA' Journal, <doi:10.1177/1536867X19830877>) and 'MacKinnon et al' (2022), which makes it feasible to quickly calculate bootstrap test statistics based on a large number of bootstrap draws even for large samples. Multiple bootstrap types as described in 'MacKinnon, Nielsen & Webb' (2022) are supported. Further, 'multiway' clustering, regression weights, bootstrap weights, fixed effects and 'subcluster' bootstrapping are supported. Further, both restricted ('WCR') and unrestricted ('WCU') bootstrap are supported. Methods are provided for a variety of fitted models, including 'lm()', 'feols()' (from package 'fixest') and 'felm()' (from package 'lfe'). Additionally implements a 'heteroskedasticity-robust' ('HC1') wild bootstrap. Last, the package provides an R binding to 'WildBootTests.jl', which provides additional speed gains and functionality, including the 'WRE' bootstrap for instrumental variable models (based on models of type 'ivreg()' from package 'ivreg') and hypotheses with q > 1.
Maintained by Alexander Fischer. Last updated 2 years ago.
clustered-standard-errorslinear-regression-modelswild-bootstrapwild-cluster-bootstrapopenblascppopenmp
44.8 match 24 stars 6.67 score 109 scripts 2 dependentswlandau
crew.cluster:Crew Launcher Plugins for Traditional High-Performance Computing Clusters
In computationally demanding analysis projects, statisticians and data scientists asynchronously deploy long-running tasks to distributed systems, ranging from traditional clusters to cloud services. The 'crew.cluster' package extends the 'mirai'-powered 'crew' package with worker launcher plugins for traditional high-performance computing systems. Inspiration also comes from packages 'mirai' by Gao (2023) <https://github.com/shikokuchuo/mirai>, 'future' by Bengtsson (2021) <doi:10.32614/RJ-2021-048>, 'rrq' by FitzJohn and Ashton (2023) <https://github.com/mrc-ide/rrq>, 'clustermq' by Schubert (2019) <doi:10.1093/bioinformatics/btz284>), and 'batchtools' by Lang, Bischl, and Surmann (2017). <doi:10.21105/joss.00135>.
Maintained by William Michael Landau. Last updated 1 months ago.
crewhigh-performance-computing
43.8 match 28 stars 6.81 score 68 scriptsrezakj
iCellR:Analyzing High-Throughput Single Cell Sequencing Data
A toolkit that allows scientists to work with data from single cell sequencing technologies such as scRNA-seq, scVDJ-seq, scATAC-seq, CITE-Seq and Spatial Transcriptomics (ST). Single (i) Cell R package ('iCellR') provides unprecedented flexibility at every step of the analysis pipeline, including normalization, clustering, dimensionality reduction, imputation, visualization, and so on. Users can design both unsupervised and supervised models to best suit their research. In addition, the toolkit provides 2D and 3D interactive visualizations, differential expression analysis, filters based on cells, genes and clusters, data merging, normalizing for dropouts, data imputation methods, correcting for batch differences, pathway analysis, tools to find marker genes for clusters and conditions, predict cell types and pseudotime analysis. See Khodadadi-Jamayran, et al (2020) <doi:10.1101/2020.05.05.078550> and Khodadadi-Jamayran, et al (2020) <doi:10.1101/2020.03.31.019109> for more details.
Maintained by Alireza Khodadadi-Jamayran. Last updated 8 months ago.
10xgenomics3dbatch-normalizationcell-type-classificationcite-seqclusteringclustering-algorithmdiffusion-mapsdropouticellrimputationintractive-graphnormalizationpseudotimescrna-seqscvdj-seqsingel-cell-sequencingumapcpp
53.4 match 121 stars 5.56 score 7 scripts 1 dependentsbioc
cogena:co-expressed gene-set enrichment analysis
cogena is a workflow for co-expressed gene-set enrichment analysis. It aims to discovery smaller scale, but highly correlated cellular events that may be of great biological relevance. A novel pipeline for drug discovery and drug repositioning based on the cogena workflow is proposed. Particularly, candidate drugs can be predicted based on the gene expression of disease-related data, or other similar drugs can be identified based on the gene expression of drug-related data. Moreover, the drug mode of action can be disclosed by the associated pathway analysis. In summary, cogena is a flexible workflow for various gene set enrichment analysis for co-expressed genes, with a focus on pathway/GO analysis and drug repositioning.
Maintained by Zhilong Jia. Last updated 5 months ago.
clusteringgenesetenrichmentgeneexpressionvisualizationpathwayskegggomicroarraysequencingsystemsbiologydatarepresentationdataimportbioconductorbioinformatics
39.9 match 12 stars 7.36 score 32 scriptsbioc
immunoClust:immunoClust - Automated Pipeline for Population Detection in Flow Cytometry
immunoClust is a model based clustering approach for Flow Cytometry samples. The cell-events of single Flow Cytometry samples are modelled by a mixture of multinominal normal- or t-distributions. The cell-event clusters of several samples are modelled by a mixture of multinominal normal-distributions aiming stable co-clusters across these samples.
Maintained by Till Soerensen. Last updated 4 months ago.
clusteringflowcytometrysinglecellcellbasedassaysimmunooncologygslcpp
65.6 match 4.38 score 4 scriptssparklyr
sparklyr:R Interface to Apache Spark
R interface to Apache Spark, a fast and general engine for big data processing, see <https://spark.apache.org/>. This package supports connecting to local and remote Apache Spark clusters, provides a 'dplyr' compatible back-end, and provides an interface to Spark's built-in machine learning algorithms.
Maintained by Edgar Ruiz. Last updated 9 days ago.
apache-sparkdistributeddplyridelivymachine-learningremote-clusterssparksparklyr
18.9 match 959 stars 15.16 score 4.0k scripts 21 dependentsjoemsong
Ckmeans.1d.dp:Optimal, Fast, and Reproducible Univariate Clustering
Fast, optimal, and reproducible weighted univariate clustering by dynamic programming. Four problems are solved, including univariate k-means (Wang & Song 2011) <doi:10.32614/RJ-2011-015> (Song & Zhong 2020) <doi:10.1093/bioinformatics/btaa613>, k-median, k-segments, and multi-channel weighted k-means. Dynamic programming is used to minimize the sum of (weighted) within-cluster distances using respective metrics. Its advantage over heuristic clustering in efficiency and accuracy is pronounced when there are many clusters. Multi-channel weighted k-means groups multiple univariate signals into k clusters. An auxiliary function generates histograms adaptive to patterns in data. This package provides a powerful set of tools for univariate data analysis with guaranteed optimality, efficiency, and reproducibility, useful for peak calling on temporal, spatial, and spectral data.
Maintained by Joe Song. Last updated 2 years ago.
33.2 match 19 stars 8.62 score 339 scripts 19 dependentscore-bioinformatics
ClustAssess:Tools for Assessing Clustering
A set of tools for evaluating clustering robustness using proportion of ambiguously clustered pairs (Senbabaoglu et al. (2014) <doi:10.1038/srep06207>), as well as similarity across methods and method stability using element-centric clustering comparison (Gates et al. (2019) <doi:10.1038/s41598-019-44892-y>). Additionally, this package enables stability-based parameter assessment for graph-based clustering pipelines typical in single-cell data analysis.
Maintained by Andi Munteanu. Last updated 1 months ago.
softwaresinglecellrnaseqatacseqnormalizationpreprocessingdimensionreductionvisualizationqualitycontrolclusteringclassificationannotationgeneexpressiondifferentialexpressionbioinformaticsgenomicsmachine-learningparameter-optimizationrobustnesssingle-cellunsupervised-learningcpp
50.0 match 22 stars 5.68 score 18 scriptsbioc
flowClust:Clustering for Flow Cytometry
Robust model-based clustering using a t-mixture model with Box-Cox transformation. Note: users should have GSL installed. Windows users: 'consult the README file available in the inst directory of the source distribution for necessary configuration instructions'.
Maintained by Greg Finak. Last updated 5 months ago.
immunooncologyclusteringvisualizationflowcytometry
38.7 match 7.30 score 83 scripts 6 dependentsbioc
ChemmineR:Cheminformatics Toolkit for R
ChemmineR is a cheminformatics package for analyzing drug-like small molecule data in R. Its latest version contains functions for efficient processing of large numbers of molecules, physicochemical/structural property predictions, structural similarity searching, classification and clustering of compound libraries with a wide spectrum of algorithms. In addition, it offers visualization functions for compound clustering results and chemical structures.
Maintained by Thomas Girke. Last updated 5 months ago.
cheminformaticsbiomedicalinformaticspharmacogeneticspharmacogenomicsmicrotitreplateassaycellbasedassaysvisualizationinfrastructuredataimportclusteringproteomicsmetabolomicscpp
29.7 match 14 stars 9.42 score 253 scripts 12 dependentstomasfryda
h2o:R Interface for the 'H2O' Scalable Machine Learning Platform
R interface for 'H2O', the scalable open source machine learning platform that offers parallelized implementations of many supervised and unsupervised machine learning algorithms such as Generalized Linear Models (GLM), Gradient Boosting Machines (including XGBoost), Random Forests, Deep Neural Networks (Deep Learning), Stacked Ensembles, Naive Bayes, Generalized Additive Models (GAM), ANOVA GLM, Cox Proportional Hazards, K-Means, PCA, ModelSelection, Word2Vec, as well as a fully automatic machine learning algorithm (H2O AutoML).
Maintained by Tomas Fryda. Last updated 1 years ago.
34.0 match 3 stars 8.20 score 7.8k scripts 11 dependentsemf-creaf
vegclust:Fuzzy Clustering of Vegetation Data
A set of functions to: (1) perform fuzzy clustering of vegetation data (De Caceres et al, 2010) <doi:10.1111/j.1654-1103.2010.01211.x>; (2) to assess ecological community similarity on the basis of structure and composition (De Caceres et al, 2013) <doi:10.1111/2041-210X.12116>.
Maintained by Miquel De Cáceres. Last updated 8 months ago.
43.8 match 2 stars 6.28 score 52 scripts 6 dependentskassambara
factoextra:Extract and Visualize the Results of Multivariate Data Analyses
Provides some easy-to-use functions to extract and visualize the output of multivariate data analyses, including 'PCA' (Principal Component Analysis), 'CA' (Correspondence Analysis), 'MCA' (Multiple Correspondence Analysis), 'FAMD' (Factor Analysis of Mixed Data), 'MFA' (Multiple Factor Analysis) and 'HMFA' (Hierarchical Multiple Factor Analysis) functions from different R packages. It contains also functions for simplifying some clustering analysis steps and provides 'ggplot2' - based elegant data visualization.
Maintained by Alboukadel Kassambara. Last updated 5 years ago.
19.0 match 363 stars 14.13 score 15k scripts 52 dependentslaperez
Clustering:Techniques for Evaluating Clustering
The design of this package allows us to run different clustering packages and compare the results between them, to determine which algorithm behaves best from the data provided. See Martos, L.A.P., García-Vico, Á.M., González, P. et al.(2023) <doi:10.1007/s13748-022-00294-2> "Clustering: an R library to facilitate the analysis and comparison of cluster algorithms.", Martos, L.A.P., García-Vico, Á.M., González, P. et al. "A Multiclustering Evolutionary Hyperrectangle-Based Algorithm" <doi:10.1007/s44196-023-00341-3> and L.A.P., García-Vico, Á.M., González, P. et al. "An Evolutionary Fuzzy System for Multiclustering in Data Streaming" <doi:10.1016/j.procs.2023.12.058>.
Maintained by Luis Alfonso Perez Martos. Last updated 11 months ago.
66.3 match 5 stars 4.04 score 7 scriptsrte-antares-rpackage
antaresEditObject:Edit an 'Antares' Simulation
Edit an 'Antares' simulation before running it : create new areas, links, thermal clusters or binding constraints or edit existing ones. Update 'Antares' general & optimization settings. 'Antares' is an open source power system generator, more information available here : <https://antares-simulator.org/>.
Maintained by Tatiana Vargas. Last updated 27 days ago.
antares-simulationclusterenergymonte-carlo-simulationrte
29.6 match 8 stars 8.76 score 101 scriptsbioc
BayesSpace:Clustering and Resolution Enhancement of Spatial Transcriptomes
Tools for clustering and enhancing the resolution of spatial gene expression experiments. BayesSpace clusters a low-dimensional representation of the gene expression matrix, incorporating a spatial prior to encourage neighboring spots to cluster together. The method can enhance the resolution of the low-dimensional representation into "sub-spots", for which features such as gene expression or cell type composition can be imputed.
Maintained by Matt Stone. Last updated 5 months ago.
softwareclusteringtranscriptomicsgeneexpressionsinglecellimmunooncologydataimportopenblascppopenmp
29.0 match 123 stars 8.89 score 278 scripts 1 dependentssatijalab
Seurat:Tools for Single Cell Genomics
A toolkit for quality control, analysis, and exploration of single cell RNA sequencing data. 'Seurat' aims to enable users to identify and interpret sources of heterogeneity from single cell transcriptomic measurements, and to integrate diverse types of single cell data. See Satija R, Farrell J, Gennert D, et al (2015) <doi:10.1038/nbt.3192>, Macosko E, Basu A, Satija R, et al (2015) <doi:10.1016/j.cell.2015.05.002>, Stuart T, Butler A, et al (2019) <doi:10.1016/j.cell.2019.05.031>, and Hao, Hao, et al (2020) <doi:10.1101/2020.10.12.335331> for more details.
Maintained by Paul Hoffman. Last updated 1 years ago.
human-cell-atlassingle-cell-genomicssingle-cell-rna-seqcpp
15.2 match 2.4k stars 16.86 score 50k scripts 73 dependentsbioc
diffcyt:Differential discovery in high-dimensional cytometry via high-resolution clustering
Statistical methods for differential discovery analyses in high-dimensional cytometry data (including flow cytometry, mass cytometry or CyTOF, and oligonucleotide-tagged cytometry), based on a combination of high-resolution clustering and empirical Bayes moderated tests adapted from transcriptomics.
Maintained by Lukas M. Weber. Last updated 1 months ago.
immunooncologyflowcytometryproteomicssinglecellcellbasedassayscellbiologyclusteringfeatureextractionsoftware
25.6 match 20 stars 9.98 score 225 scripts 5 dependentsmlizhangx
NAIR:Network Analysis of Immune Repertoire
Pipelines for studying the adaptive immune repertoire of T cells and B cells via network analysis based on receptor sequence similarity. Relate clinical outcomes to immune repertoires based on their network properties, or to particular clusters and clones within a repertoire. Yang et al. (2023) <doi:10.3389/fimmu.2023.1181825>.
Maintained by Brian Neal. Last updated 2 months ago.
36.1 match 7 stars 6.83 score 27 scriptsbioc
CAGEfightR:Analysis of Cap Analysis of Gene Expression (CAGE) data using Bioconductor
CAGE is a widely used high throughput assay for measuring transcription start site (TSS) activity. CAGEfightR is an R/Bioconductor package for performing a wide range of common data analysis tasks for CAGE and 5'-end data in general. Core functionality includes: import of CAGE TSSs (CTSSs), tag (or unidirectional) clustering for TSS identification, bidirectional clustering for enhancer identification, annotation with transcript and gene models, correlation of TSS and enhancer expression, calculation of TSS shapes, quantification of CAGE expression as expression matrices and genome brower visualization.
Maintained by Malte Thodberg. Last updated 5 months ago.
softwaretranscriptioncoveragegeneexpressiongeneregulationpeakdetectiondataimportdatarepresentationtranscriptomicssequencingannotationgenomebrowsersnormalizationpreprocessingvisualization
33.0 match 8 stars 7.46 score 67 scripts 1 dependentskurthornik
clue:Cluster Ensembles
CLUster Ensembles.
Maintained by Kurt Hornik. Last updated 4 months ago.
24.9 match 2 stars 9.85 score 496 scripts 401 dependentspneuvial
adjclust:Adjacency-Constrained Clustering of a Block-Diagonal Similarity Matrix
Implements a constrained version of hierarchical agglomerative clustering, in which each observation is associated to a position, and only adjacent clusters can be merged. Typical application fields in bioinformatics include Genome-Wide Association Studies or Hi-C data analysis, where the similarity between items is a decreasing function of their genomic distance. Taking advantage of this feature, the implemented algorithm is time and memory efficient. This algorithm is described in Ambroise et al (2019) <doi:10.1186/s13015-019-0157-4>.
Maintained by Pierre Neuvial. Last updated 5 months ago.
clusteringfeatureextractiongwashi-chierarchical-clusteringlinkage-disequilibriumcppopenmp
33.0 match 16 stars 7.35 score 13 scripts 2 dependentsbioc
CatsCradle:This package provides methods for analysing spatial transcriptomics data and for discovering gene clusters
This package addresses two broad areas. It allows for in-depth analysis of spatial transcriptomic data by identifying tissue neighbourhoods. These are contiguous regions of tissue surrounding individual cells. 'CatsCradle' allows for the categorisation of neighbourhoods by the cell types contained in them and the genes expressed in them. In particular, it produces Seurat objects whose individual elements are neighbourhoods rather than cells. In addition, it enables the categorisation and annotation of genes by producing Seurat objects whose elements are genes.
Maintained by Michael Shapiro. Last updated 1 months ago.
biologicalquestionstatisticalmethodgeneexpressionsinglecelltranscriptomicsspatial
36.4 match 3 stars 6.50 scoreovvo-financial
NNS:Nonlinear Nonparametric Statistics
Nonlinear nonparametric statistics using partial moments. Partial moments are the elements of variance and asymptotically approximate the area of f(x). These robust statistics provide the basis for nonlinear analysis while retaining linear equivalences. NNS offers: Numerical integration, Numerical differentiation, Clustering, Correlation, Dependence, Causal analysis, ANOVA, Regression, Classification, Seasonality, Autoregressive modeling, Normalization, Stochastic dominance and Advanced Monte Carlo sampling. All routines based on: Viole, F. and Nawrocki, D. (2013), Nonlinear Nonparametric Statistics: Using Partial Moments (ISBN: 1490523995).
Maintained by Fred Viole. Last updated 5 days ago.
clusteringeconometricsmachine-learningnonlinearnonparametricpartial-momentsstatisticstime-seriescpp
21.5 match 71 stars 10.96 score 66 scripts 3 dependentsubod
apcluster:Affinity Propagation Clustering
Implements Affinity Propagation clustering introduced by Frey and Dueck (2007) <DOI:10.1126/science.1136800>. The algorithms are largely analogous to the 'Matlab' code published by Frey and Dueck. The package further provides leveraged affinity propagation and an algorithm for exemplar-based agglomerative clustering that can also be used to join clusters obtained from affinity propagation. Various plotting functions are available for analyzing clustering results.
Maintained by Ulrich Bodenhofer. Last updated 11 months ago.
24.1 match 10 stars 9.82 score 270 scripts 25 dependentsbioc
spatialHeatmap:spatialHeatmap: Visualizing Spatial Assays in Anatomical Images and Large-Scale Data Extensions
The spatialHeatmap package offers the primary functionality for visualizing cell-, tissue- and organ-specific assay data in spatial anatomical images. Additionally, it provides extended functionalities for large-scale data mining routines and co-visualizing bulk and single-cell data. A description of the project is available here: https://spatialheatmap.org.
Maintained by Jianhai Zhang. Last updated 4 months ago.
spatialvisualizationmicroarraysequencinggeneexpressiondatarepresentationnetworkclusteringgraphandnetworkcellbasedassaysatacseqdnaseqtissuemicroarraysinglecellcellbiologygenetarget
37.7 match 5 stars 6.26 score 12 scriptsbioc
CAGEr:Analysis of CAGE (Cap Analysis of Gene Expression) sequencing data for precise mapping of transcription start sites and promoterome mining
The _CAGEr_ package identifies transcription start sites (TSS) and their usage frequency from CAGE (Cap Analysis Gene Expression) sequencing data. It normalises raw CAGE tag count, clusters TSSs into tag clusters (TC) and aggregates them across multiple CAGE experiments to construct consensus clusters (CC) representing the promoterome. CAGEr provides functions to profile expression levels of these clusters by cumulative expression and rarefaction analysis, and outputs the plots in ggplot2 format for further facetting and customisation. After clustering, CAGEr performs analyses of promoter width and detects differential usage of TSSs (promoter shifting) between samples. CAGEr also exports its data as genome browser tracks, and as R objects for downsteam expression analysis by other Bioconductor packages such as DESeq2, CAGEfightR, or seqArchR.
Maintained by Charles Plessy. Last updated 5 months ago.
preprocessingsequencingnormalizationfunctionalgenomicstranscriptiongeneexpressionclusteringvisualization
38.3 match 6.12 score 73 scriptscrj32
Spectrum:Fast Adaptive Spectral Clustering for Single and Multi-View Data
A self-tuning spectral clustering method for single or multi-view data. 'Spectrum' uses a new type of adaptive density aware kernel that strengthens connections in the graph based on common nearest neighbours. It uses a tensor product graph data integration and diffusion procedure to integrate different data sources and reduce noise. 'Spectrum' uses either the eigengap or multimodality gap heuristics to determine the number of clusters. The method is sufficiently flexible so that a wide range of Gaussian and non-Gaussian structures can be clustered with automatic selection of K.
Maintained by Christopher R John. Last updated 5 years ago.
38.8 match 7 stars 5.99 score 47 scripts 1 dependentsbioc
monocle:Clustering, differential expression, and trajectory analysis for single- cell RNA-Seq
Monocle performs differential expression and time-series analysis for single-cell expression experiments. It orders individual cells according to progress through a biological process, without knowing ahead of time which genes define progress through that process. Monocle also performs differential expression analysis, clustering, visualization, and other useful tasks on single cell expression data. It is designed to work with RNA-Seq and qPCR data, but could be used with other types as well.
Maintained by Cole Trapnell. Last updated 5 months ago.
immunooncologysequencingrnaseqgeneexpressiondifferentialexpressioninfrastructuredataimportdatarepresentationvisualizationclusteringmultiplecomparisonqualitycontrolcpp
26.1 match 8.89 score 1.6k scripts 2 dependentshiweller
colordistance:Distance Metrics for Image Color Similarity
Loads and displays images, selectively masks specified background colors, bins pixels by color using either data-dependent or automatically generated color bins, quantitatively measures color similarity among images using one of several distance metrics for comparing pixel color clusters, and clusters images by object color similarity. Uses CIELAB, RGB, or HSV color spaces. Originally written for use with organism coloration (reef fish color diversity, butterfly mimicry, etc), but easily applicable for any image set.
Maintained by Hannah Weller. Last updated 1 years ago.
28.9 match 37 stars 7.93 score 76 scripts 2 dependentsjuba
rainette:The Reinert Method for Textual Data Clustering
An R implementation of the Reinert text clustering method. For more details about the algorithm see the included vignettes or Reinert (1990) <doi:10.1177/075910639002600103>.
Maintained by Julien Barnier. Last updated 11 months ago.
text-analysistext-classificationcpp
32.7 match 55 stars 6.90 score 24 scriptsbioc
scran:Methods for Single-Cell RNA-Seq Data Analysis
Implements miscellaneous functions for interpretation of single-cell RNA-seq data. Methods are provided for assignment of cell cycle phase, detection of highly variable and significantly correlated genes, identification of marker genes, and other common tasks in routine single-cell analysis workflows.
Maintained by Aaron Lun. Last updated 5 months ago.
immunooncologynormalizationsequencingrnaseqsoftwaregeneexpressiontranscriptomicssinglecellclusteringbioconductor-packagehuman-cell-atlassingle-cell-rna-seqopenblascpp
17.1 match 41 stars 13.14 score 7.6k scripts 36 dependentsbioc
timeOmics:Time-Course Multi-Omics data integration
timeOmics is a generic data-driven framework to integrate multi-Omics longitudinal data measured on the same biological samples and select key temporal features with strong associations within the same sample group. The main steps of timeOmics are: 1. Plaform and time-specific normalization and filtering steps; 2. Modelling each biological into one time expression profile; 3. Clustering features with the same expression profile over time; 4. Post-hoc validation step.
Maintained by Antoine Bodein. Last updated 5 months ago.
clusteringfeatureextractiontimecoursedimensionreductionsoftwaresequencingmicroarraymetabolomicsmetagenomicsproteomicsclassificationregressionimmunooncologygenepredictionmultiplecomparisonclusterintegrationmulti-omicstime-series
37.6 match 24 stars 5.98 score 10 scriptsbioc
GeDi:Defining and visualizing the distances between different genesets
The package provides different distances measurements to calculate the difference between genesets. Based on these scores the genesets are clustered and visualized as graph. This is all presented in an interactive Shiny application for easy usage.
Maintained by Annekathrin Nedwed. Last updated 5 months ago.
guigenesetenrichmentsoftwaretranscriptionrnaseqvisualizationclusteringpathwaysreportwritinggokeggreactomeshinyapps
40.6 match 1 stars 5.52 score 22 scriptsjayanilakshika
cardinalR:Collection of Data Structures
A collection of simple simulation datasets designed for generating Nonlinear Dimension Reduction representations techniques such as t-distributed Stochastic Neighbor Embedding, and Uniform Manifold Approximation and Projection. These datasets serve as a valuable resource for understanding the reliability of Nonlinear Dimension Reduction representations in various contexts.
Maintained by Jayani P.G. Lakshika. Last updated 11 days ago.
49.3 match 4.54 scoretudo-r
BatchJobs:Batch Computing with R
Provides Map, Reduce and Filter variants to generate jobs on batch computing systems like PBS/Torque, LSF, SLURM and Sun Grid Engine. Multicore and SSH systems are also supported. For further details see the project web page.
Maintained by Bernd Bischl. Last updated 3 years ago.
26.0 match 85 stars 8.57 score 616 scripts 3 dependentsnvelden
geneviewer:Gene Cluster Visualizations
Provides tools for plotting gene clusters and transcripts by importing data from GenBank, FASTA, and GFF files. It performs BLASTP and MUMmer alignments [Altschul et al. (1990) <doi:10.1016/S0022-2836(05)80360-2>; Delcher et al. (1999) <doi:10.1093/nar/27.11.2369>] and displays results on gene arrow maps. Extensive customization options are available, including legends, labels, annotations, scales, colors, tooltips, and more.
Maintained by Niels van der Velden. Last updated 29 days ago.
37.7 match 43 stars 5.86 score 13 scriptsbioc
ILoReg:ILoReg: a tool for high-resolution cell population identification from scRNA-Seq data
ILoReg is a tool for identification of cell populations from scRNA-seq data. In particular, ILoReg is useful for finding cell populations with subtle transcriptomic differences. The method utilizes a self-supervised learning method, called Iteratitive Clustering Projection (ICP), to find cluster probabilities, which are used in noise reduction prior to PCA and the subsequent hierarchical clustering and t-SNE steps. Additionally, functions for differential expression analysis to find gene markers for the populations and gene expression visualization are provided.
Maintained by Johannes Smolander. Last updated 5 months ago.
singlecellsoftwareclusteringdimensionreductionrnaseqvisualizationtranscriptomicsdatarepresentationdifferentialexpressiontranscriptiongeneexpression
44.9 match 5 stars 4.88 score 2 scriptsmatthias-studer
WeightedCluster:Clustering of Weighted Data
Clusters state sequences and weighted data. It provides an optimized weighted PAM algorithm as well as functions for aggregating replicated cases, computing cluster quality measures for a range of clustering solutions and plotting (fuzzy) clusters of state sequences. Parametric bootstraps methods to validate typology of sequences are also provided. Finally, it provides a fuzzy and crisp CLARA algorithm to cluster large database with sequence analysis.
Maintained by Matthias Studer. Last updated 3 months ago.
39.0 match 5.55 score 106 scripts 4 dependentsr-forge
sandwich:Robust Covariance Matrix Estimators
Object-oriented software for model-robust covariance matrix estimators. Starting out from the basic robust Eicker-Huber-White sandwich covariance methods include: heteroscedasticity-consistent (HC) covariances for cross-section data; heteroscedasticity- and autocorrelation-consistent (HAC) covariances for time series data (such as Andrews' kernel HAC, Newey-West, and WEAVE estimators); clustered covariances (one-way and multi-way); panel and panel-corrected covariances; outer-product-of-gradients covariances; and (clustered) bootstrap covariances. All methods are applicable to (generalized) linear model objects fitted by lm() and glm() but can also be adapted to other classes through S3 methods. Details can be found in Zeileis et al. (2020) <doi:10.18637/jss.v095.i01>, Zeileis (2004) <doi:10.18637/jss.v011.i10> and Zeileis (2006) <doi:10.18637/jss.v016.i09>.
Maintained by Achim Zeileis. Last updated 2 months ago.
14.2 match 14.92 score 11k scripts 887 dependentsbioc
ViSEAGO:ViSEAGO: a Bioconductor package for clustering biological functions using Gene Ontology and semantic similarity
The main objective of ViSEAGO package is to carry out a data mining of biological functions and establish links between genes involved in the study. We developed ViSEAGO in R to facilitate functional Gene Ontology (GO) analysis of complex experimental design with multiple comparisons of interest. It allows to study large-scale datasets together and visualize GO profiles to capture biological knowledge. The acronym stands for three major concepts of the analysis: Visualization, Semantic similarity and Enrichment Analysis of Gene Ontology. It provides access to the last current GO annotations, which are retrieved from one of NCBI EntrezGene, Ensembl or Uniprot databases for several species. Using available R packages and novel developments, ViSEAGO extends classical functional GO analysis to focus on functional coherence by aggregating closely related biological themes while studying multiple datasets at once. It provides both a synthetic and detailed view using interactive functionalities respecting the GO graph structure and ensuring functional coherence supplied by semantic similarity. ViSEAGO has been successfully applied on several datasets from different species with a variety of biological questions. Results can be easily shared between bioinformaticians and biologists, enhancing reporting capabilities while maintaining reproducibility.
Maintained by Aurelien Brionne. Last updated 2 months ago.
softwareannotationgogenesetenrichmentmultiplecomparisonclusteringvisualization
31.9 match 6.64 score 22 scriptsalinetalhouk
diceR:Diverse Cluster Ensemble in R
Performs cluster analysis using an ensemble clustering framework, Chiu & Talhouk (2018) <doi:10.1186/s12859-017-1996-y>. Results from a diverse set of algorithms are pooled together using methods such as majority voting, K-Modes, LinkCluE, and CSPA. There are options to compare cluster assignments across algorithms using internal and external indices, visualizations such as heatmaps, and significance testing for the existence of clusters.
Maintained by Derek Chiu. Last updated 1 months ago.
25.5 match 37 stars 8.13 score 60 scripts 3 dependentstidymodels
tidyclust:A Common API to Clustering
A common interface to specifying clustering models, in the same style as 'parsnip'. Creates unified interface across different functions and computational engines.
Maintained by Emil Hvitfeldt. Last updated 2 months ago.
27.8 match 111 stars 7.45 score 139 scriptsthibautjombart
adegenet:Exploratory Analysis of Genetic and Genomic Data
Toolset for the exploration of genetic and genomic data. Adegenet provides formal (S4) classes for storing and handling various genetic data, including genetic markers with varying ploidy and hierarchical population structure ('genind' class), alleles counts by populations ('genpop'), and genome-wide SNP data ('genlight'). It also implements original multivariate methods (DAPC, sPCA), graphics, statistical tests, simulation tools, distance and similarity measures, and several spatial methods. A range of both empirical and simulated datasets is also provided to illustrate various methods.
Maintained by Zhian N. Kamvar. Last updated 1 months ago.
16.3 match 182 stars 12.60 score 1.9k scripts 29 dependentsbioc
flowMatch:Matching and meta-clustering in flow cytometry
Matching cell populations and building meta-clusters and templates from a collection of FC samples.
Maintained by Ariful Azad. Last updated 5 months ago.
immunooncologyclusteringflowcytometrycpp
52.2 match 3.90 score 1 scriptscsafe-isu
handwriter:Handwriting Analysis in R
Perform statistical writership analysis of scanned handwritten documents. Webpage provided at: <https://github.com/CSAFE-ISU/handwriter>.
Maintained by Stephanie Reinders. Last updated 1 months ago.
23.3 match 24 stars 8.70 score 27 scripts 2 dependentsbioc
CluMSID:Clustering of MS2 Spectra for Metabolite Identification
CluMSID is a tool that aids the identification of features in untargeted LC-MS/MS analysis by the use of MS2 spectra similarity and unsupervised statistical methods. It offers functions for a complete and customisable workflow from raw data to visualisations and is interfaceable with the xmcs family of preprocessing packages.
Maintained by Tobias Depke. Last updated 5 months ago.
metabolomicspreprocessingclustering
33.5 match 10 stars 6.04 score 22 scriptseasystats
parameters:Processing of Model Parameters
Utilities for processing the parameters of various statistical models. Beyond computing p values, CIs, and other indices for a wide variety of models (see list of supported models using the function 'insight::supported_models()'), this package implements features like bootstrapping or simulating of parameters and models, feature reduction (feature extraction and variable selection) as well as functions to describe data and variable characteristics (e.g. skewness, kurtosis, smoothness or distribution).
Maintained by Daniel Lüdecke. Last updated 2 days ago.
betabootstrapciconfidence-intervalsdata-reductioneasystatsfafeature-extractionfeature-reductionhacktoberfestparameterspcapvaluesregression-modelsrobust-statisticsstandardizestandardized-estimatesstatistical-models
12.8 match 453 stars 15.65 score 1.8k scripts 56 dependentsbioc
scBubbletree:Quantitative visual exploration of scRNA-seq data
scBubbletree is a quantitative method for the visual exploration of scRNA-seq data, preserving key biological properties such as local and global cell distances and cell density distributions across samples. It effectively resolves overplotting and enables the visualization of diverse cell attributes from multiomic single-cell experiments. Additionally, scBubbletree is user-friendly and integrates seamlessly with popular scRNA-seq analysis tools, facilitating comprehensive and intuitive data interpretation.
Maintained by Simo Kitanovski. Last updated 5 months ago.
visualizationclusteringsinglecelltranscriptomicsrnaseqbig-databigdatascrna-seqscrna-seq-analysisvisualvisual-exploration
34.5 match 6 stars 5.82 score 8 scriptsbioc
ChromSCape:Analysis of single-cell epigenomics datasets with a Shiny App
ChromSCape - Chromatin landscape profiling for Single Cells - is a ready-to-launch user-friendly Shiny Application for the analysis of single-cell epigenomics datasets (scChIP-seq, scATAC-seq, scCUT&Tag, ...) from aligned data to differential analysis & gene set enrichment analysis. It is highly interactive, enables users to save their analysis and covers a wide range of analytical steps: QC, preprocessing, filtering, batch correction, dimensionality reduction, vizualisation, clustering, differential analysis and gene set analysis.
Maintained by Pacome Prompsy. Last updated 5 months ago.
shinyappssoftwaresinglecellchipseqatacseqmethylseqclassificationclusteringepigeneticsprincipalcomponentannotationbatcheffectmultiplecomparisonnormalizationpathwayspreprocessingqualitycontrolreportwritingvisualizationgenesetenrichmentdifferentialpeakcallingepigenomicsshinysingle-cellcpp
34.2 match 14 stars 5.83 score 16 scriptsbioc
GOSemSim:GO-terms Semantic Similarity Measures
The semantic comparisons of Gene Ontology (GO) annotations provide quantitative ways to compute similarities between genes and gene groups, and have became important basis for many bioinformatics analysis approaches. GOSemSim is an R package for semantic similarity computation among GO terms, sets of GO terms, gene products and gene clusters. GOSemSim implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively.
Maintained by Guangchuang Yu. Last updated 5 months ago.
annotationgoclusteringpathwaysnetworksoftwarebioinformaticsgene-ontologysemantic-similaritycpp
14.1 match 63 stars 14.12 score 708 scripts 68 dependentsbioc
scGPS:A complete analysis of single cell subpopulations, from identifying subpopulations to analysing their relationship (scGPS = single cell Global Predictions of Subpopulation)
The package implements two main algorithms to answer two key questions: a SCORE (Stable Clustering at Optimal REsolution) to find subpopulations, followed by scGPS to investigate the relationships between subpopulations.
Maintained by Quan Nguyen. Last updated 5 months ago.
singlecellclusteringdataimportsequencingcoverageopenblascpp
38.0 match 4 stars 5.20 score 7 scriptsbioc
FlowSOM:Using self-organizing maps for visualization and interpretation of cytometry data
FlowSOM offers visualization options for cytometry data, by using Self-Organizing Map clustering and Minimal Spanning Trees.
Maintained by Sofie Van Gassen. Last updated 5 months ago.
cellbiologyflowcytometryclusteringvisualizationsoftwarecellbasedassays
25.2 match 7.71 score 468 scripts 10 dependentsmd-anderson-bioinformatics
NGCHM:Next Generation Clustered Heat Maps
Next-Generation Clustered Heat Maps (NG-CHMs) allow for dynamic exploration of heat map data in a web browser. 'NGCHM' allows users to create both stand-alone HTML files containing a Next-Generation Clustered Heat Map, and .ngchm files to view in the NG-CHM viewer. See Ryan MC, Stucky M, et al (2020) <doi:10.12688/f1000research.20590.2> for more details.
Maintained by Mary A Rohrdanz. Last updated 8 days ago.
35.2 match 9 stars 5.48 score 28 scriptsmllg
batchtools:Tools for Computation on Batch Systems
As a successor of the packages 'BatchJobs' and 'BatchExperiments', this package provides a parallel implementation of the Map function for high performance computing systems managed by schedulers 'IBM Spectrum LSF' (<https://www.ibm.com/products/hpc-workload-management>), 'OpenLava' (<https://www.openlava.org/>), 'Univa Grid Engine'/'Oracle Grid Engine' (<https://www.univa.com/>), 'Slurm' (<https://slurm.schedmd.com/>), 'TORQUE/PBS' (<https://adaptivecomputing.com/cherry-services/torque-resource-manager/>), or 'Docker Swarm' (<https://docs.docker.com/engine/swarm/>). A multicore and socket mode allow the parallelization on a local machines, and multiple machines can be hooked up via SSH to create a makeshift cluster. Moreover, the package provides an abstraction mechanism to define large-scale computer experiments in a well-organized and reproducible way.
Maintained by Michel Lang. Last updated 2 years ago.
batchexperimentsbatchjobsdocker-swarmhigh-performance-computinghpchpc-clusterslsfopenlavaparallel-computingreproducibilitysgeslurmtorque
16.5 match 175 stars 11.39 score 772 scripts 14 dependentsbioc
slingshot:Tools for ordering single-cell sequencing
Provides functions for inferring continuous, branching lineage structures in low-dimensional data. Slingshot was designed to model developmental trajectories in single-cell RNA sequencing data and serve as a component in an analysis pipeline after dimensionality reduction and clustering. It is flexible enough to handle arbitrarily many branching events and allows for the incorporation of prior knowledge through supervised graph construction.
Maintained by Kelly Street. Last updated 5 months ago.
clusteringdifferentialexpressiongeneexpressionrnaseqsequencingsoftwaresinglecelltranscriptomicsvisualization
15.6 match 283 stars 12.01 score 1.0k scripts 4 dependentsbioc
phyloseq:Handling and analysis of high-throughput microbiome census data
phyloseq provides a set of classes and tools to facilitate the import, storage, analysis, and graphical display of microbiome census data.
Maintained by Paul J. McMurdie. Last updated 5 months ago.
immunooncologysequencingmicrobiomemetagenomicsclusteringclassificationmultiplecomparisongeneticvariability
13.4 match 597 stars 13.90 score 8.4k scripts 37 dependentsbioc
FEAST:FEAture SelcTion (FEAST) for Single-cell clustering
Cell clustering is one of the most important and commonly performed tasks in single-cell RNA sequencing (scRNA-seq) data analysis. An important step in cell clustering is to select a subset of genes (referred to as “features”), whose expression patterns will then be used for downstream clustering. A good set of features should include the ones that distinguish different cell types, and the quality of such set could have significant impact on the clustering accuracy. FEAST is an R library for selecting most representative features before performing the core of scRNA-seq clustering. It can be used as a plug-in for the etablished clustering algorithms such as SC3, TSCAN, SHARP, SIMLR, and Seurat. The core of FEAST algorithm includes three steps: 1. consensus clustering; 2. gene-level significance inference; 3. validation of an optimized feature set.
Maintained by Kenong Su. Last updated 5 months ago.
sequencingsinglecellclusteringfeatureextraction
31.1 match 10 stars 5.97 score 47 scriptscran
e1071:Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien
Functions for latent class analysis, short time Fourier transform, fuzzy clustering, support vector machines, shortest path computation, bagged clustering, naive Bayes classifier, generalized k-nearest neighbour ...
Maintained by David Meyer. Last updated 6 months ago.
12.8 match 28 stars 14.46 score 19k scripts 2.0k dependentsgagolews
genie:Fast, Robust, and Outlier Resistant Hierarchical Clustering
Includes the reference implementation of Genie - a hierarchical clustering algorithm that links two point groups in such a way that an inequity measure (namely, the Gini index) of the cluster sizes does not significantly increase above a given threshold. This method most often outperforms many other data segmentation approaches in terms of clustering quality as tested on a wide range of benchmark datasets. At the same time, Genie retains the high speed of the single linkage approach, therefore it is also suitable for analysing larger data sets. For more details see (Gagolewski et al. 2016 <DOI:10.1016/j.ins.2016.05.003>). For an even faster and more feature-rich implementation, including, amongst others, noise point detection, see the 'genieclust' package (Gagolewski, 2021 <DOI:10.1016/j.softx.2021.100722>).
Maintained by Marek Gagolewski. Last updated 3 years ago.
clustercluster-analysisclusteringdata-analysisdata-miningdata-sciencedatasciencegeniehierarchical-clustering-algorithmmachine-learningmachine-learning-algorithmsoutlierscppopenmp
40.7 match 22 stars 4.55 score 16 scriptskisungyou
T4cluster:Tools for Cluster Analysis
Cluster analysis is one of the most fundamental problems in data science. We provide a variety of algorithms from clustering to the learning on the space of partitions. See Hennig, Meila, and Rocci (2016, ISBN:9781466551886) for general exposition to cluster analysis.
Maintained by Kisung You. Last updated 3 years ago.
43.1 match 6 stars 4.26 score 9 scripts 2 dependentsbioc
vsclust:Feature-based variance-sensitive quantitative clustering
Feature-based variance-sensitive clustering of omics data. Optimizes cluster assignment by taking into account individual feature variance. Includes several modules for statistical testing, clustering and enrichment analysis.
Maintained by Veit Schwammle. Last updated 2 months ago.
clusteringannotationprincipalcomponentdifferentialexpressionvisualizationproteomicsmetabolomicscpp
38.8 match 4.70 score 9 scriptsbioc
DESeq2:Differential gene expression analysis based on the negative binomial distribution
Estimate variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the negative binomial distribution.
Maintained by Michael Love. Last updated 11 days ago.
sequencingrnaseqchipseqgeneexpressiontranscriptionnormalizationdifferentialexpressionbayesianregressionprincipalcomponentclusteringimmunooncologyopenblascpp
11.2 match 375 stars 16.11 score 17k scripts 115 dependentsbioc
iClusterPlus:Integrative clustering of multi-type genomic data
Integrative clustering of multiple genomic data using a joint latent variable model.
Maintained by Qianxing Mo. Last updated 4 months ago.
multi-omicsclusteringfortranopenblas
30.9 match 5.76 score 190 scriptsbioc
evaluomeR:Evaluation of Bioinformatics Metrics
Evaluating the reliability of your own metrics and the measurements done on your own datasets by analysing the stability and goodness of the classifications of such metrics.
Maintained by José Antonio Bernabé-Díaz. Last updated 5 months ago.
clusteringclassificationfeatureextractionassessmentclustering-evaluationevaluomeevaluomermetrics
36.9 match 4.82 score 33 scriptsbioc
simplifyEnrichment:Simplify Functional Enrichment Results
A new clustering algorithm, "binary cut", for clustering similarity matrices of functional terms is implemeted in this package. It also provides functions for visualizing, summarizing and comparing the clusterings.
Maintained by Zuguang Gu. Last updated 5 months ago.
softwarevisualizationgoclusteringgenesetenrichment
22.1 match 113 stars 8.02 score 196 scriptsazure
azuremlsdk:Interface to the 'Azure Machine Learning' 'SDK'
Interface to the 'Azure Machine Learning' Software Development Kit ('SDK'). Data scientists can use the 'SDK' to train, deploy, automate, and manage machine learning models on the 'Azure Machine Learning' service. To learn more about 'Azure Machine Learning' visit the website: <https://docs.microsoft.com/en-us/azure/machine-learning/service/overview-what-is-azure-ml>.
Maintained by Diondra Peck. Last updated 3 years ago.
amlcomputeazureazure-machine-learningazuremldsimachine-learningrstudiosdk-r
19.9 match 106 stars 8.91 score 221 scriptshusson
FactoMineR:Multivariate Exploratory Data Analysis and Data Mining
Exploratory data analysis methods to summarize, visualize and describe datasets. The main principal component methods are available, those with the largest potential in terms of applications: principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, Multiple Factor Analysis when variables are structured in groups, etc. and hierarchical cluster analysis. F. Husson, S. Le and J. Pages (2017).
Maintained by Francois Husson. Last updated 3 months ago.
12.0 match 47 stars 14.71 score 5.6k scripts 112 dependentscbhurley
gclus:Clustering Graphics
Orders panels in scatterplot matrices and parallel coordinate displays by some merit index. Package contains various indices of merit, ordering functions, and enhanced versions of pairs and parcoord which color panels according to their merit level.
Maintained by Catherine Hurley. Last updated 6 years ago.
21.4 match 8.23 score 406 scripts 82 dependentsdeclaredesign
randomizr:Easy-to-Use Tools for Common Forms of Random Assignment and Sampling
Generates random assignments for common experimental designs and random samples for common sampling designs.
Maintained by Alexander Coppock. Last updated 1 months ago.
17.8 match 37 stars 9.90 score 396 scripts 13 dependentsigraph
igraph:Network Analysis and Visualization
Routines for simple graphs and network analysis. It can handle large graphs very well and provides functions for generating random and regular graphs, graph visualization, centrality methods and much more.
Maintained by Kirill Müller. Last updated 2 days ago.
complex-networksgraph-algorithmsgraph-theorymathematicsnetwork-analysisnetwork-graphfortranlibxml2glpkopenblascpp
8.3 match 581 stars 21.10 score 31k scripts 1.9k dependentsbioc
seqArchRplus:Downstream analyses of promoter sequence architectures and HTML report generation
seqArchRplus facilitates downstream analyses of promoter sequence architectures/clusters identified by seqArchR (or any other tool/method). With additional available information such as the TPM values and interquantile widths (IQWs) of the CAGE tag clusters, seqArchRplus can order the input promoter clusters by their shape (IQWs), and write the cluster information as browser/IGV track files. Provided visualizations are of two kind: per sample/stage and per cluster visualizations. Those of the first kind include: plot panels for each sample showing per cluster shape, TPM and other score distributions, sequence logos, and peak annotations. The second include per cluster chromosome-wise and strand distributions, motif occurrence heatmaps and GO term enrichments. Additionally, seqArchRplus can also generate HTML reports for easy viewing and comparison of promoter architectures between samples/stages.
Maintained by Sarvesh Nikumbh. Last updated 5 months ago.
annotationvisualizationreportwritinggomotifannotationclustering
43.0 match 1 stars 4.00 score 2 scriptscivisanalytics
civis:R Client for the 'Civis Platform API'
A convenient interface for making requests directly to the 'Civis Platform API' <https://www.civisanalytics.com/platform/>. Full documentation available 'here' <https://civisanalytics.github.io/civis-r/>.
Maintained by Peter Cooman. Last updated 2 months ago.
21.6 match 16 stars 7.84 score 144 scriptsbioc
ggtree:an R package for visualization of tree and annotation data
'ggtree' extends the 'ggplot2' plotting system which implemented the grammar of graphics. 'ggtree' is designed for visualization and annotation of phylogenetic trees and other tree-like structures with their annotation data.
Maintained by Guangchuang Yu. Last updated 5 months ago.
alignmentannotationclusteringdataimportmultiplesequencealignmentphylogeneticsreproducibleresearchsoftwarevisualizationannotationsggplot2phylogenetic-trees
10.0 match 864 stars 16.86 score 5.1k scripts 109 dependentszcebeci
odetector:Outlier Detection Using Partitioning Clustering Algorithms
An object is called "outlier" if it remarkably deviates from the other objects in a data set. Outlier detection is the process to find outliers by using the methods that are based on distance measures, clustering and spatial methods (Ben-Gal, 2005 <ISBN 0-387-24435-2>). It is one of the intensively studied research topics for identification of novelties, frauds, anomalies, deviations or exceptions in addition to its use for outlier removing in data processing. This package provides the implementations of some novel approaches to detect the outliers based on typicality degrees that are obtained with the soft partitioning clustering algorithms such as Fuzzy C-means and its variants.
Maintained by Zeynel Cebeci. Last updated 2 years ago.
anomaly-detectioncluster-analysisclusteringclustering-methodsdatadatapreparationdatapreprocessingexception-handlingfcmfraud-detectionfuzzy-clusteringnovelty-detectionoutlier-detectionoutlier-removaloutlierspartitioningpcmsurprise-exploration
45.3 match 3.70 score 4 scriptsmpadge
spatialcluster:R port of redcap
R port of redcap (Regionalization with dynamically constrained agglomerative clustering and partitioning).
Maintained by Mark Padgham. Last updated 2 months ago.
clusterclustering-algorithmspatialcpp
33.7 match 31 stars 4.97 score 1 scriptsrhenkin
visxhclust:A Shiny App for Visual Exploration of Hierarchical Clustering
A Shiny application and functions for visual exploration of hierarchical clustering with numeric datasets. Allows users to iterative set hyperparameters, select features and evaluate results through various plots and computation of evaluation criteria.
Maintained by Rafael Henkin. Last updated 2 years ago.
clusteringdata-analysisdata-sciencer-shinyshiny-apps
34.4 match 4 stars 4.86 score 12 scriptsbioc
MLInterfaces:Uniform interfaces to R machine learning procedures for data in Bioconductor containers
This package provides uniform interfaces to machine learning code for data in R and Bioconductor containers.
Maintained by Vincent Carey. Last updated 5 months ago.
21.9 match 7.63 score 79 scripts 6 dependentsspatstat
spatstat.random:Random Generation Functionality for the 'spatstat' Family
Functionality for random generation of spatial data in the 'spatstat' family of packages. Generates random spatial patterns of points according to many simple rules (complete spatial randomness, Poisson, binomial, random grid, systematic, cell), randomised alteration of patterns (thinning, random shift, jittering), simulated realisations of random point processes including simple sequential inhibition, Matern inhibition models, Neyman-Scott cluster processes (using direct, Brix-Kendall, or hybrid algorithms), log-Gaussian Cox processes, product shot noise cluster processes and Gibbs point processes (using Metropolis-Hastings birth-death-shift algorithm, alternating Gibbs sampler, or coupling-from-the-past perfect simulation). Also generates random spatial patterns of line segments, random tessellations, and random images (random noise, random mosaics). Excludes random generation on a linear network, which is covered by the separate package 'spatstat.linnet'.
Maintained by Adrian Baddeley. Last updated 6 months ago.
point-processesrandom-generationsimulationspatial-samplingspatial-simulationcpp
15.4 match 5 stars 10.77 score 84 scripts 173 dependentsbioc
BioNAR:Biological Network Analysis in R
the R package BioNAR, developed to step by step analysis of PPI network. The aim is to quantify and rank each protein’s simultaneous impact into multiple complexes based on network topology and clustering. Package also enables estimating of co-occurrence of diseases across the network and specific clusters pointing towards shared/common mechanisms.
Maintained by Anatoly Sorokin. Last updated 18 days ago.
softwaregraphandnetworknetwork
28.0 match 3 stars 5.90 score 35 scriptsbioc
DirichletMultinomial:Dirichlet-Multinomial Mixture Model Machine Learning for Microbiome Data
Dirichlet-multinomial mixture models can be used to describe variability in microbial metagenomic data. This package is an interface to code originally made available by Holmes, Harris, and Quince, 2012, PLoS ONE 7(2): 1-15, as discussed further in the man page for this package, ?DirichletMultinomial.
Maintained by Martin Morgan. Last updated 5 months ago.
immunooncologymicrobiomesequencingclusteringclassificationmetagenomicsgsl
15.0 match 11 stars 10.97 score 125 scripts 26 dependentsdatastorm-open
visNetwork:Network Visualization using 'vis.js' Library
Provides an R interface to the 'vis.js' JavaScript charting library. It allows an interactive visualization of networks.
Maintained by Benoit Thieurmel. Last updated 2 years ago.
10.8 match 549 stars 15.14 score 4.1k scripts 195 dependentsjchiquet
aricode:Efficient Computations of Standard Clustering Comparison Measures
Implements an efficient O(n) algorithm based on bucket-sorting for fast computation of standard clustering comparison measures. Available measures include adjusted Rand index (ARI), normalized information distance (NID), normalized mutual information (NMI), adjusted mutual information (AMI), normalized variation information (NVI) and entropy, as described in Vinh et al (2009) <doi:10.1145/1553374.1553511>. Include AMI (Adjusted Mutual Information) since version 0.1.2, a modified version of ARI (MARI), as described in Sundqvist et al. <doi:10.1007/s00180-022-01230-7> and simple Chi-square distance since version 1.0.0.
Maintained by Julien Chiquet. Last updated 1 years ago.
bucket-sortclusteringclustering-comparison-measurescpp
20.1 match 25 stars 8.15 score 542 scripts 14 dependentsbioc
M3C:Monte Carlo Reference-based Consensus Clustering
M3C is a consensus clustering algorithm that uses a Monte Carlo simulation to eliminate overestimation of K and can reject the null hypothesis K=1.
Maintained by Christopher John. Last updated 5 months ago.
clusteringgeneexpressiontranscriptionrnaseqsequencingimmunooncology
24.7 match 6.59 score 174 scripts 1 dependentscomeetie
greed:Clustering and Model Selection with the Integrated Classification Likelihood
An ensemble of algorithms that enable the clustering of networks and data matrices (such as counts, categorical or continuous) with different type of generative models. Model selection and clustering is performed in combination by optimizing the Integrated Classification Likelihood (which is equivalent to minimizing the description length). Several models are available such as: Stochastic Block Model, degree corrected Stochastic Block Model, Mixtures of Multinomial, Latent Block Model. The optimization is performed thanks to a combination of greedy local search and a genetic algorithm (see <arXiv:2002:11577> for more details).
Maintained by Etienne Côme. Last updated 2 years ago.
27.3 match 14 stars 5.94 score 41 scriptsmhahsler
rEMM:Extensible Markov Model for Modelling Temporal Relationships Between Clusters
Implements TRACDS (Temporal Relationships between Clusters for Data Streams), a generalization of Extensible Markov Model (EMM). TRACDS adds a temporal or order model to data stream clustering by superimposing a dynamically adapting Markov Chain. Also provides an implementation of EMM (TRACDS on top of tNN data stream clustering). Development of this package was supported in part by NSF IIS-0948893 and R21HG005912 from the National Human Genome Research Institute. Hahsler and Dunham (2010) <doi:10.18637/jss.v035.i05>.
Maintained by Michael Hahsler. Last updated 7 months ago.
clusteringdata-streamsequence-analysis
33.8 match 2 stars 4.79 score 31 scriptsbiorgeo
bioregion:Comparison of Bioregionalisation Methods
The main purpose of this package is to propose a transparent methodological framework to compare bioregionalisation methods based on hierarchical and non-hierarchical clustering algorithms (Kreft & Jetz (2010) <doi:10.1111/j.1365-2699.2010.02375.x>) and network algorithms (Lenormand et al. (2019) <doi:10.1002/ece3.4718> and Leroy et al. (2019) <doi:10.1111/jbi.13674>).
Maintained by Maxime Lenormand. Last updated 10 days ago.
biogeographybioregionbioregionalizationcpp
25.7 match 7 stars 6.27 score 11 scriptscleanzr
clevr:Clustering and Link Prediction Evaluation in R
Tools for evaluating link prediction and clustering algorithms with respect to ground truth. Includes efficient implementations of common performance measures such as pairwise precision/recall, cluster homogeneity/completeness, variation of information, Rand index etc.
Maintained by Neil Marchant. Last updated 1 years ago.
clustering-evaluationentity-resolutionevaluation-metricslink-predictionrecord-linkagecpp
33.6 match 12 stars 4.77 score 49 scriptsegenn
rtemis:Machine Learning and Visualization
Advanced Machine Learning and Visualization. Unsupervised Learning (Clustering, Decomposition), Supervised Learning (Classification, Regression), Cross-Decomposition, Bagging, Boosting, Meta-models. Static and interactive graphics.
Maintained by E.D. Gennatas. Last updated 1 months ago.
data-sciencedata-visualizationmachine-learningmachine-learning-libraryvisualization
22.4 match 145 stars 7.09 score 50 scripts 2 dependentschrhennig
prabclus:Functions for Clustering and Testing of Presence-Absence, Abundance and Multilocus Genetic Data
Distance-based parametric bootstrap tests for clustering with spatial neighborhood information. Some distance measures, Clustering of presence-absence, abundance and multilocus genetic data for species delimitation, nearest neighbor based noise detection. Genetic distances between communities. Tests whether various distance-based regressions are equal. Try package?prabclus for on overview.
Maintained by Christian Hennig. Last updated 6 months ago.
26.4 match 1 stars 5.99 score 90 scripts 71 dependentsbioc
cola:A Framework for Consensus Partitioning
Subgroup classification is a basic task in genomic data analysis, especially for gene expression and DNA methylation data analysis. It can also be used to test the agreement to known clinical annotations, or to test whether there exist significant batch effects. The cola package provides a general framework for subgroup classification by consensus partitioning. It has the following features: 1. It modularizes the consensus partitioning processes that various methods can be easily integrated. 2. It provides rich visualizations for interpreting the results. 3. It allows running multiple methods at the same time and provides functionalities to straightforward compare results. 4. It provides a new method to extract features which are more efficient to separate subgroups. 5. It automatically generates detailed reports for the complete analysis. 6. It allows applying consensus partitioning in a hierarchical manner.
Maintained by Zuguang Gu. Last updated 1 months ago.
clusteringgeneexpressionclassificationsoftwareconsensus-clusteringcpp
21.1 match 61 stars 7.49 score 112 scriptschrismuir
refinr:Cluster and Merge Similar Values Within a Character Vector
These functions take a character vector as input, identify and cluster similar values, and then merge clusters together so their values become identical. The functions are an implementation of the key collision and ngram fingerprint algorithms from the open source tool Open Refine <https://openrefine.org/>. More info on key collision and ngram fingerprint can be found here <https://openrefine.org/docs/technical-reference/clustering-in-depth>.
Maintained by Chris Muir. Last updated 1 years ago.
approximate-string-matchingclusteringdata-cleaningdata-clusteringfuzzy-matchingngramopenrefinecpp
23.0 match 104 stars 6.80 score 121 scriptsbioc
tradeSeq:trajectory-based differential expression analysis for sequencing data
tradeSeq provides a flexible method for fitting regression models that can be used to find genes that are differentially expressed along one or multiple lineages in a trajectory. Based on the fitted models, it uses a variety of tests suited to answer different questions of interest, e.g. the discovery of genes for which expression is associated with pseudotime, or which are differentially expressed (in a specific region) along the trajectory. It fits a negative binomial generalized additive model (GAM) for each gene, and performs inference on the parameters of the GAM.
Maintained by Hector Roux de Bezieux. Last updated 5 months ago.
clusteringregressiontimecoursedifferentialexpressiongeneexpressionrnaseqsequencingsoftwaresinglecelltranscriptomicsmultiplecomparisonvisualization
15.5 match 247 stars 10.06 score 440 scriptsmhahsler
seriation:Infrastructure for Ordering Objects Using Seriation
Infrastructure for ordering objects with an implementation of several seriation/sequencing/ordination techniques to reorder matrices, dissimilarity matrices, and dendrograms. Also provides (optimally) reordered heatmaps, color images and clustering visualizations like dissimilarity plots, and visual assessment of cluster tendency plots (VAT and iVAT). Hahsler et al (2008) <doi:10.18637/jss.v025.i03>.
Maintained by Michael Hahsler. Last updated 3 months ago.
combinatorial-optimizationordinationseriationfortran
11.1 match 77 stars 14.07 score 640 scripts 79 dependentsbioc
MetaNeighbor:Single cell replicability analysis
MetaNeighbor allows users to quantify cell type replicability across datasets using neighbor voting.
Maintained by Stephan Fischer. Last updated 5 months ago.
immunooncologygeneexpressiongomultiplecomparisonsinglecelltranscriptomics
26.3 match 5.89 score 78 scriptsswarm-lab
CEC:Cross-Entropy Clustering
Splits data into Gaussian type clusters using the Cross-Entropy Clustering ('CEC') method. This method allows for the simultaneous use of various types of Gaussian mixture models, for performing the reduction of unnecessary clusters, and for discovering new clusters by splitting them. 'CEC' is based on the work of Spurek, P. and Tabor, J. (2014) <doi:10.1016/j.patcog.2014.03.006>.
Maintained by Simon Garnier. Last updated 5 months ago.
clusteringcross-entropyopenblascpp
36.2 match 10 stars 4.26 score 18 scriptsbioc
Cardinal:A mass spectrometry imaging toolbox for statistical analysis
Implements statistical & computational tools for analyzing mass spectrometry imaging datasets, including methods for efficient pre-processing, spatial segmentation, and classification.
Maintained by Kylie Ariel Bemis. Last updated 3 months ago.
softwareinfrastructureproteomicslipidomicsmassspectrometryimagingmassspectrometryimmunooncologynormalizationclusteringclassificationregression
14.8 match 47 stars 10.34 score 200 scriptsplangfelder
WGCNA:Weighted Correlation Network Analysis
Functions necessary to perform Weighted Correlation Network Analysis on high-dimensional data as originally described in Horvath and Zhang (2005) <doi:10.2202/1544-6115.1128> and Langfelder and Horvath (2008) <doi:10.1186/1471-2105-9-559>. Includes functions for rudimentary data cleaning, construction of correlation networks, module identification, summarization, and relating of variables and modules to sample traits. Also includes a number of utility functions for data manipulation and visualization.
Maintained by Peter Langfelder. Last updated 6 months ago.
15.7 match 54 stars 9.65 score 5.3k scripts 32 dependentsdgrun
RaceID:Identification of Cell Types, Inference of Lineage Trees, and Prediction of Noise Dynamics from Single-Cell RNA-Seq Data
Application of 'RaceID' allows inference of cell types and prediction of lineage trees by the 'StemID2' algorithm (Herman, J.S., Sagar, Grun D. (2018) <DOI:10.1038/nmeth.4662>). 'VarID2' is part of this package and allows quantification of biological gene expression noise at single-cell resolution (Rosales-Alvarez, R.E., Rettkowski, J., Herman, J.S., Dumbovic, G., Cabezas-Wallscheid, N., Grun, D. (2023) <DOI:10.1186/s13059-023-02974-1>).
Maintained by Dominic Grün. Last updated 4 months ago.
32.0 match 4.74 score 110 scriptsbioc
mobileRNA:mobileRNA: Investigate the RNA mobilome & population-scale changes
Genomic analysis can be utilised to identify differences between RNA populations in two conditions, both in production and abundance. This includes the identification of RNAs produced by multiple genomes within a biological system. For example, RNA produced by pathogens within a host or mobile RNAs in plant graft systems. The mobileRNA package provides methods to pre-process, analyse and visualise the sRNA and mRNA populations based on the premise of mapping reads to all genotypes at the same time.
Maintained by Katie Jeynes-Cupper. Last updated 5 months ago.
visualizationrnaseqsequencingsmallrnagenomeassemblyclusteringexperimentaldesignqualitycontrolworkflowstepalignmentpreprocessingbioinformaticsplant-science
30.0 match 4 stars 5.00 score 2 scriptscran
epiR:Tools for the Analysis of Epidemiological Data
Tools for the analysis of epidemiological and surveillance data. Contains functions for directly and indirectly adjusting measures of disease frequency, quantifying measures of association on the basis of single or multiple strata of count data presented in a contingency table, computation of confidence intervals around incidence risk and incidence rate estimates and sample size calculations for cross-sectional, case-control and cohort studies. Surveillance tools include functions to calculate an appropriate sample size for 1- and 2-stage representative freedom surveys, functions to estimate surveillance system sensitivity and functions to support scenario tree modelling analyses.
Maintained by Mark Stevenson. Last updated 2 months ago.
18.3 match 10 stars 8.18 score 10 dependentscran
flexclust:Flexible Cluster Algorithms
The main function kcca implements a general framework for k-centroids cluster analysis supporting arbitrary distance measures and centroid computation. Further cluster methods include hard competitive learning, neural gas, and QT clustering. There are numerous visualization methods for cluster results (neighborhood graphs, convex cluster hulls, barcharts of centroids, ...), and bootstrap methods for the analysis of cluster stability.
Maintained by Bettina Grün. Last updated 16 days ago.
25.6 match 3 stars 5.81 score 52 dependentsbioc
cyanoFilter:Phytoplankton Population Identification using Cell Pigmentation and/or Complexity
An approach to filter out and/or identify phytoplankton cells from all particles measured via flow cytometry pigment and cell complexity information. It does this using a sequence of one-dimensional gates on pre-defined channels measuring certain pigmentation and complexity. The package is especially tuned for cyanobacteria, but will work fine for phytoplankton communities where there is at least one cell characteristic that differentiates every phytoplankton in the community.
Maintained by Oluwafemi Olusoji. Last updated 5 months ago.
flowcytometryclusteringonechannel
34.6 match 4.30 score 4 scriptsnoramvillanueva
clustcurv:Determining Groups in Multiples Curves
A method for determining groups in multiple curves with an automatic selection of their number based on k-means or k-medians algorithms. The selection of the optimal number is provided by bootstrap methods. The methodology can be applied both in regression and survival framework. Implemented methods are: Grouping multiple survival curves described by Villanueva et al. (2018) <doi:10.1002/sim.8016>.
Maintained by Nora M. Villanueva. Last updated 4 months ago.
clusteringdata-analyticsmachinelearningmultiple-curvesnonparametric-statisticsnumber-of-clustersregressionsurvival-analysis
26.9 match 3 stars 5.53 score 38 scriptsbioc
Melissa:Bayesian clustering and imputationa of single cell methylomes
Melissa is a Baysian probabilistic model for jointly clustering and imputing single cell methylomes. This is done by taking into account local correlations via a Generalised Linear Model approach and global similarities using a mixture modelling approach.
Maintained by C. A. Kapourani. Last updated 5 months ago.
immunooncologydnamethylationgeneexpressiongeneregulationepigeneticsgeneticsclusteringfeatureextractionregressionrnaseqbayesiankeggsequencingcoveragesinglecell
30.3 match 4.90 score 7 scriptsharrelfe
Hmisc:Harrell Miscellaneous
Contains many functions useful for data analysis, high-level graphics, utility operations, functions for computing sample size and power, simulation, importing and annotating datasets, imputing missing values, advanced table making, variable clustering, character string manipulation, conversion of R objects to LaTeX and html code, recoding variables, caching, simplified parallel computing, encrypting and decrypting data using a safe workflow, general moving window statistical estimation, and assistance in interpreting principal component analysis.
Maintained by Frank E Harrell Jr. Last updated 2 days ago.
8.4 match 210 stars 17.61 score 17k scripts 750 dependentscran
clusterability:Performs Tests for Cluster Tendency of a Data Set
Test for cluster tendency (clusterability) of a data set. The methods implemented - reducing the data set to a single dimension using principal component analysis or computing pairwise distances, and performing a multimodality test like the Dip Test or Silverman's Critical Bandwidth Test - are described in Adolfsson, Ackerman, and Brownstein (2019) <doi:10.1016/j.patcog.2018.10.026>. Such methods can inform whether clustering algorithms are appropriate for a data set.
Maintained by Zachariah Neville. Last updated 5 years ago.
73.2 match 2.02 score 21 scriptsbioc
DepecheR:Determination of essential phenotypic elements of clusters in high-dimensional entities
The purpose of this package is to identify traits in a dataset that can separate groups. This is done on two levels. First, clustering is performed, using an implementation of sparse K-means. Secondly, the generated clusters are used to predict outcomes of groups of individuals based on their distribution of observations in the different clusters. As certain clusters with separating information will be identified, and these clusters are defined by a sparse number of variables, this method can reduce the complexity of data, to only emphasize the data that actually matters.
Maintained by Jakob Theorell. Last updated 5 months ago.
softwarecellbasedassaystranscriptiondifferentialexpressiondatarepresentationimmunooncologytranscriptomicsclassificationclusteringdimensionreductionfeatureextractionflowcytometryrnaseqsinglecellvisualizationcpp
28.2 match 5.18 score 15 scriptsbioc
omada:Machine learning tools for automated transcriptome clustering analysis
Symptomatic heterogeneity in complex diseases reveals differences in molecular states that need to be investigated. However, selecting the numerous parameters of an exploratory clustering analysis in RNA profiling studies requires deep understanding of machine learning and extensive computational experimentation. Tools that assist with such decisions without prior field knowledge are nonexistent and further gene association analyses need to be performed independently. We have developed a suite of tools to automate these processes and make robust unsupervised clustering of transcriptomic data more accessible through automated machine learning based functions. The efficiency of each tool was tested with four datasets characterised by different expression signal strengths. Our toolkit’s decisions reflected the real number of stable partitions in datasets where the subgroups are discernible. Even in datasets with less clear biological distinctions, stable subgroups with different expression profiles and clinical associations were found.
Maintained by Sokratis Kariotis. Last updated 5 months ago.
softwareclusteringrnaseqgeneexpression
40.3 match 3.60 score 5 scriptsropensci
treeio:Base Classes and Functions for Phylogenetic Tree Input and Output
'treeio' is an R package to make it easier to import and store phylogenetic tree with associated data; and to link external data from different sources to phylogeny. It also supports exporting phylogenetic tree with heterogeneous associated data to a single tree file and can be served as a platform for merging tree with associated data and converting file formats.
Maintained by Guangchuang Yu. Last updated 5 months ago.
softwareannotationclusteringdataimportdatarepresentationalignmentmultiplesequencealignmentphylogeneticsexporterparserphylogenetic-trees
11.6 match 102 stars 12.46 score 1.3k scripts 122 dependentshiweller
recolorize:Color-Based Image Segmentation
Automatic, semi-automatic, and manual functions for generating color maps from images. The idea is to simplify the colors of an image according to a metric that is useful for the user, using deterministic methods whenever possible. Many images will be clustered well using the out-of-the-box functions, but the package also includes a toolbox of functions for making manual adjustments (layer merging/isolation, blurring, fitting to provided color clusters or those from another image, etc). Also includes export methods for other color/pattern analysis packages (pavo, patternize, colordistance).
Maintained by Hannah Weller. Last updated 13 days ago.
18.7 match 39 stars 7.68 score 87 scriptscsafe-isu
handwriterRF:Handwriting Analysis with Random Forests
Perform forensic handwriting analysis of two scanned handwritten documents. This package implements the statistical method described by Madeline Johnson and Danica Ommen (2021) <doi:10.1002/sam.11566>. Similarity measures and a random forest produce a score-based likelihood ratio that quantifies the strength of the evidence in favor of the documents being written by the same writer or different writers.
Maintained by Stephanie Reinders. Last updated 8 days ago.
23.2 match 2 stars 6.18 score 15 scripts 1 dependentsthomasp85
densityClust:Clustering by Fast Search and Find of Density Peaks
An improved implementation (based on k-nearest neighbors) of the density peak clustering algorithm, originally described by Alex Rodriguez and Alessandro Laio (Science, 2014 vol. 344). It can handle large datasets (> 100,000 samples) very efficiently. It was initially implemented by Thomas Lin Pedersen, with inputs from Sean Hughes and later improved by Xiaojie Qiu to handle large datasets with kNNs.
Maintained by Thomas Lin Pedersen. Last updated 1 years ago.
20.0 match 153 stars 7.14 score 75 scriptssamhforbes
eyetrackingR:Eye-Tracking Data Analysis
Addresses tasks along the pipeline from raw data to analysis and visualization for eye-tracking data. Offers several popular types of analyses, including linear and growth curve time analyses, onset-contingent reaction time analyses, as well as several non-parametric bootstrapping approaches. For references to the approach see Mirman, Dixon & Magnuson (2008) <doi:10.1016/j.jml.2007.11.006>, and Barr (2008) <doi:10.1016/j.jml.2007.09.002>.
Maintained by Samuel Forbes. Last updated 2 years ago.
18.1 match 22 stars 7.84 score 60 scriptskharchenkolab
pagoda2:Single Cell Analysis and Differential Expression
Analyzing and interactively exploring large-scale single-cell RNA-seq datasets. 'pagoda2' primarily performs normalization and differential gene expression analysis, with an interactive application for exploring single-cell RNA-seq datasets. It performs basic tasks such as cell size normalization, gene variance normalization, and can be used to identify subpopulations and run differential expression within individual samples. 'pagoda2' was written to rapidly process modern large-scale scRNAseq datasets of approximately 1e6 cells. The companion web application allows users to explore which gene expression patterns form the different subpopulations within your data. The package also serves as the primary method for preprocessing data for conos, <https://github.com/kharchenkolab/conos>. This package interacts with data available through the 'p2data' package, which is available in a 'drat' repository. To access this data package, see the instructions at <https://github.com/kharchenkolab/pagoda2>. The size of the 'p2data' package is approximately 6 MB.
Maintained by Evan Biederstedt. Last updated 1 years ago.
scrna-seqsingle-cellsingle-cell-rna-seqtranscriptomicsopenblascppopenmp
17.7 match 222 stars 8.00 score 282 scriptsbioc
BPRMeth:Model higher-order methylation profiles
The BPRMeth package is a probabilistic method to quantify explicit features of methylation profiles, in a way that would make it easier to formally use such profiles in downstream modelling efforts, such as predicting gene expression levels or clustering genomic regions or cells according to their methylation profiles.
Maintained by Chantriolnt-Andreas Kapourani. Last updated 5 months ago.
immunooncologydnamethylationgeneexpressiongeneregulationepigeneticsgeneticsclusteringfeatureextractionregressionrnaseqbayesiankeggsequencingcoveragesinglecellopenblascpp
24.6 match 5.75 score 94 scripts 1 dependentsbioc
InterCellar:InterCellar: an R-Shiny app for interactive analysis and exploration of cell-cell communication in single-cell transcriptomics
InterCellar is implemented as an R/Bioconductor Package containing a Shiny app that allows users to interactively analyze cell-cell communication from scRNA-seq data. Starting from precomputed ligand-receptor interactions, InterCellar provides filtering options, annotations and multiple visualizations to explore clusters, genes and functions. Finally, based on functional annotation from Gene Ontology and pathway databases, InterCellar implements data-driven analyses to investigate cell-cell communication in one or multiple conditions.
Maintained by Marta Interlandi. Last updated 5 months ago.
softwaresinglecellvisualizationgotranscriptomics
28.4 match 9 stars 4.95 score 7 scriptsseborinos
NCutYX:Clustering of Omics Data of Multiple Types with a Multilayer Network Representation
Omics data come in different forms: gene expression, methylation, copy number, protein measurements and more. 'NCutYX' allows clustering of variables, of samples, and both variables and samples (biclustering), while incorporating the dependencies across multiple types of Omics data. (SJ Teran Hidalgo et al (2017), <doi:10.1186/s12864-017-3990-1>).
Maintained by Sebastian J. Teran Hidalgo. Last updated 7 years ago.
c-plus-pluscancer-genomicsclusteringcopy-number-variationdevtoolsgene-expressiongraph-algorithmsgraph-cutgraphsproteinsrcppcpp
31.3 match 4 stars 4.48 score 15 scriptskharchenkolab
conos:Clustering on Network of Samples
Wires together large collections of single-cell RNA-seq datasets, which allows for both the identification of recurrent cell clusters and the propagation of information between datasets in multi-sample or atlas-scale collections. 'Conos' focuses on the uniform mapping of homologous cell types across heterogeneous sample collections. For instance, users could investigate a collection of dozens of peripheral blood samples from cancer patients combined with dozens of controls, which perhaps includes samples of a related tissue such as lymph nodes. This package interacts with data available through the 'conosPanel' package, which is available in a 'drat' repository. To access this data package, see the instructions at <https://github.com/kharchenkolab/conos>. The size of the 'conosPanel' package is approximately 12 MB.
Maintained by Evan Biederstedt. Last updated 1 years ago.
batch-correctionscrna-seqsingle-cell-rna-seqopenblascppopenmp
19.1 match 204 stars 7.32 score 258 scriptsstan-dev
rstanarm:Bayesian Applied Regression Modeling via Stan
Estimates previously compiled regression models using the 'rstan' package, which provides the R interface to the Stan C++ library for Bayesian estimation. Users specify models via the customary R syntax with a formula and data.frame plus some additional arguments for priors.
Maintained by Ben Goodrich. Last updated 9 months ago.
bayesianbayesian-data-analysisbayesian-inferencebayesian-methodsbayesian-statisticsmultilevel-modelsrstanrstanarmstanstatistical-modelingcpp
8.9 match 393 stars 15.65 score 5.0k scripts 12 dependentsbioc
CDI:Clustering Deviation Index (CDI)
Single-cell RNA-sequencing (scRNA-seq) is widely used to explore cellular variation. The analysis of scRNA-seq data often starts from clustering cells into subpopulations. This initial step has a high impact on downstream analyses, and hence it is important to be accurate. However, there have not been unsupervised metric designed for scRNA-seq to evaluate clustering performance. Hence, we propose clustering deviation index (CDI), an unsupervised metric based on the modeling of scRNA-seq UMI counts to evaluate clustering of cells.
Maintained by Jiyuan Fang. Last updated 5 months ago.
singlecellsoftwareclusteringvisualizationsequencingrnaseqcellbasedassays
27.7 match 5 stars 5.00 score 4 scriptsbioc
csaw:ChIP-Seq Analysis with Windows
Detection of differentially bound regions in ChIP-seq data with sliding windows, with methods for normalization and proper FDR control.
Maintained by Aaron Lun. Last updated 2 months ago.
multiplecomparisonchipseqnormalizationsequencingcoveragegeneticsannotationdifferentialpeakcallingcurlbzip2xz-utilszlibcpp
16.6 match 8.32 score 498 scripts 7 dependentsbioc
limma:Linear Models for Microarray and Omics Data
Data analysis, linear models and differential expression for omics data.
Maintained by Gordon Smyth. Last updated 5 days ago.
exonarraygeneexpressiontranscriptionalternativesplicingdifferentialexpressiondifferentialsplicinggenesetenrichmentdataimportbayesianclusteringregressiontimecoursemicroarraymicrornaarraymrnamicroarrayonechannelproprietaryplatformstwochannelsequencingrnaseqbatcheffectmultiplecomparisonnormalizationpreprocessingqualitycontrolbiomedicalinformaticscellbiologycheminformaticsepigeneticsfunctionalgenomicsgeneticsimmunooncologymetabolomicsproteomicssystemsbiologytranscriptomics
10.0 match 13.81 score 16k scripts 585 dependentsbioc
Linnorm:Linear model and normality based normalization and transformation method (Linnorm)
Linnorm is an algorithm for normalizing and transforming RNA-seq, single cell RNA-seq, ChIP-seq count data or any large scale count data. It has been independently reviewed by Tian et al. on Nature Methods (https://doi.org/10.1038/s41592-019-0425-8). Linnorm can work with raw count, CPM, RPKM, FPKM and TPM.
Maintained by Shun Hang Yip. Last updated 5 months ago.
immunooncologysequencingchipseqrnaseqdifferentialexpressiongeneexpressiongeneticsnormalizationsoftwaretranscriptionbatcheffectpeakdetectionclusteringnetworksinglecellcpp
21.9 match 6.26 score 61 scripts 5 dependentscbg-ethz
clustNet:Network-Based Clustering
Network-based clustering using a Bayesian network mixture model with optional covariate adjustment.
Maintained by Fritz Bayer. Last updated 1 years ago.
bayesian-networkbayesian-networksclusteringdaggenomicsmixture-modelnetwork-clustering
26.5 match 7 stars 5.16 score 41 scriptsbioc
SGCP:SGCP: A semi-supervised pipeline for gene clustering using self-training approach in gene co-expression networks
SGC is a semi-supervised pipeline for gene clustering in gene co-expression networks. SGC consists of multiple novel steps that enable the computation of highly enriched modules in an unsupervised manner. But unlike all existing frameworks, it further incorporates a novel step that leverages Gene Ontology information in a semi-supervised clustering method that further improves the quality of the computed modules.
Maintained by Niloofar AghaieAbiane. Last updated 5 months ago.
geneexpressiongenesetenrichmentnetworkenrichmentsystemsbiologyclassificationclusteringdimensionreductiongraphandnetworkneuralnetworknetworkmrnamicroarrayrnaseqvisualizationbioinformaticsgenecoexpressionnetworkgraphsnetworkclusteringnetworksself-trainingsemi-supervised-learningunsupervised-learning
26.7 match 2 stars 5.12 score 44 scriptsacabassi
klic:Kernel Learning Integrative Clustering
Kernel Learning Integrative Clustering (KLIC) is an algorithm that allows to combine multiple kernels, each representing a different measure of the similarity between a set of observations. The contribution of each kernel on the final clustering is weighted according to the amount of information carried by it. As well as providing the functions required to perform the kernel-based clustering, this package also allows the user to simply give the data as input: the kernels are then built using consensus clustering. Different strategies to choose the best number of clusters are also available. For further details please see Cabassi and Kirk (2020) <doi:10.1093/bioinformatics/btaa593>.
Maintained by Alessandra Cabassi. Last updated 5 years ago.
cluster-analysisclusteringcocagenomicsintegrative-clusteringkernel-methodsmulti-omics
31.0 match 5 stars 4.40 score 10 scriptsbioc
mbkmeans:Mini-batch K-means Clustering for Single-Cell RNA-seq
Implements the mini-batch k-means algorithm for large datasets, including support for on-disk data representation.
Maintained by Davide Risso. Last updated 5 months ago.
clusteringgeneexpressionrnaseqsoftwaretranscriptomicssequencingsinglecellhuman-cell-atlascpp
18.4 match 10 stars 7.41 score 54 scripts 2 dependentsmhahsler
streamMOA:Interface for MOA Stream Clustering Algorithms
Interface for data stream clustering algorithms implemented in the MOA (Massive Online Analysis) framework (Albert Bifet, Geoff Holmes, Richard Kirkby, Bernhard Pfahringer (2010). MOA: Massive Online Analysis, Journal of Machine Learning Research 11: 1601-1604).
Maintained by Michael Hahsler. Last updated 7 months ago.
clusteringdataminingdatastreamopenjdk
22.6 match 13 stars 5.98 score 37 scriptsdicook
mulgar:Functions for Pre-Processing Data for Multivariate Data Visualisation using Tours
This is a companion to the book Cook, D. and Laa, U. (2023) <https://dicook.github.io/mulgar_book/> "Interactively exploring high-dimensional data and models in R". by Cook and Laa. It contains useful functions for processing data in preparation for visualising with a tour. There are also several sample data sets.
Maintained by Dianne Cook. Last updated 2 months ago.
30.1 match 4 stars 4.50 score 79 scriptsbioc
tidySingleCellExperiment:Brings SingleCellExperiment to the Tidyverse
'tidySingleCellExperiment' is an adapter that abstracts the 'SingleCellExperiment' container in the form of a 'tibble'. This allows *tidy* data manipulation, nesting, and plotting. For example, a 'tidySingleCellExperiment' is directly compatible with functions from 'tidyverse' packages `dplyr` and `tidyr`, as well as plotting with `ggplot2` and `plotly`. In addition, the package provides various utility functions specific to single-cell omics data analysis (e.g., aggregation of cell-level data to pseudobulks).
Maintained by Stefano Mangiola. Last updated 5 months ago.
assaydomaininfrastructurernaseqdifferentialexpressionsinglecellgeneexpressionnormalizationclusteringqualitycontrolsequencingbioconductordplyrggplot2plotlysingle-cell-rna-seqsingle-cell-sequencingsinglecellexperimenttibbletidyrtidyverse
15.3 match 36 stars 8.86 score 125 scripts 2 dependentsbioc
MetaCyto:MetaCyto: A package for meta-analysis of cytometry data
This package provides functions for preprocessing, automated gating and meta-analysis of cytometry data. It also provides functions that facilitate the collection of cytometry data from the ImmPort database.
Maintained by Zicheng Hu. Last updated 5 months ago.
immunooncologycellbiologyflowcytometryclusteringstatisticalmethodsoftwarecellbasedassayspreprocessing
28.6 match 4.73 score 18 scriptsspatstat
spatstat:Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests
Comprehensive open-source toolbox for analysing Spatial Point Patterns. Focused mainly on two-dimensional point patterns, including multitype/marked points, in any spatial region. Also supports three-dimensional point patterns, space-time point patterns in any number of dimensions, point patterns on a linear network, and patterns of other geometrical objects. Supports spatial covariate data such as pixel images. Contains over 3000 functions for plotting spatial data, exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference. Data types include point patterns, line segment patterns, spatial windows, pixel images, tessellations, and linear networks. Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the functions ppm(), kppm(), slrm(), dppm() similar to glm(). Types of models include Poisson, Gibbs and Cox point processes, Neyman-Scott cluster processes, and determinantal point processes. Models may involve dependence on covariates, inter-point interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods. A model can be fitted to a list of point patterns (replicated point pattern data) using the function mppm(). The model can include random effects and fixed effects depending on the experimental design, in addition to all the features listed above. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots.
Maintained by Adrian Baddeley. Last updated 2 months ago.
cluster-processcox-point-processgibbs-processkernel-densitynetwork-analysispoint-processpoisson-processspatial-analysisspatial-dataspatial-data-analysisspatial-statisticsspatstatstatistical-methodsstatistical-modelsstatistical-testsstatistics
8.3 match 200 stars 16.32 score 5.5k scripts 41 dependentszdebruine
RcppML:Rcpp Machine Learning Library
Fast machine learning algorithms including matrix factorization and divisive clustering for large sparse and dense matrices.
Maintained by Zach DeBruine. Last updated 2 years ago.
clusteringmatrix-factorizationnmfrcpprcppeigensparse-matrixcppopenmp
12.8 match 104 stars 10.53 score 125 scripts 46 dependentstengmcing
spotoroo:Spatiotemporal Clustering of Satellite Hot Spot Data
An algorithm to cluster satellite hot spot data spatially and temporally.
Maintained by Weihao Li. Last updated 4 months ago.
28.8 match 5 stars 4.65 score 18 scriptsbioc
edgeR:Empirical Analysis of Digital Gene Expression Data in R
Differential expression analysis of sequence count data. Implements a range of statistical methodology based on the negative binomial distributions, including empirical Bayes estimation, exact tests, generalized linear models, quasi-likelihood, and gene set enrichment. Can perform differential analyses of any type of omics data that produces read counts, including RNA-seq, ChIP-seq, ATAC-seq, Bisulfite-seq, SAGE, CAGE, metabolomics, or proteomics spectral counts. RNA-seq analyses can be conducted at the gene or isoform level, and tests can be conducted for differential exon or transcript usage.
Maintained by Yunshun Chen. Last updated 5 days ago.
alternativesplicingbatcheffectbayesianbiomedicalinformaticscellbiologychipseqclusteringcoveragedifferentialexpressiondifferentialmethylationdifferentialsplicingdnamethylationepigeneticsfunctionalgenomicsgeneexpressiongenesetenrichmentgeneticsimmunooncologymultiplecomparisonnormalizationpathwaysproteomicsqualitycontrolregressionrnaseqsagesequencingsinglecellsystemsbiologytimecoursetranscriptiontranscriptomicsopenblas
10.0 match 13.40 score 17k scripts 255 dependentsimmunomind
immunarch:Bioinformatics Analysis of T-Cell and B-Cell Immune Repertoires
A comprehensive framework for bioinformatics exploratory analysis of bulk and single-cell T-cell receptor and antibody repertoires. It provides seamless data loading, analysis and visualisation for AIRR (Adaptive Immune Receptor Repertoire) data, both bulk immunosequencing (RepSeq) and single-cell sequencing (scRNAseq). Immunarch implements most of the widely used AIRR analysis methods, such as: clonality analysis, estimation of repertoire similarities in distribution of clonotypes and gene segments, repertoire diversity analysis, annotation of clonotypes using external immune receptor databases and clonotype tracking in vaccination and cancer studies. A successor to our previously published 'tcR' immunoinformatics package (Nazarov 2015) <doi:10.1186/s12859-015-0613-1>.
Maintained by Vadim I. Nazarov. Last updated 12 months ago.
airr-analysisb-cell-receptorbcrbcr-repertoirebioinformaticsigig-repertoireimmune-repertoireimmune-repertoire-analysisimmune-repertoire-dataimmunoglobulinimmunoinformaticsimmunologyrep-seqrepertoire-analysissingle-cellsingle-cell-analysist-cell-receptortcrtcr-repertoirecpp
14.1 match 315 stars 9.49 score 203 scriptsbioc
hopach:Hierarchical Ordered Partitioning and Collapsing Hybrid (HOPACH)
The HOPACH clustering algorithm builds a hierarchical tree of clusters by recursively partitioning a data set, while ordering and possibly collapsing clusters at each level. The algorithm uses the Mean/Median Split Silhouette (MSS) criteria to identify the level of the tree with maximally homogeneous clusters. It also runs the tree down to produce a final ordered list of the elements. The non-parametric bootstrap allows one to estimate the probability that each element belongs to each cluster (fuzzy clustering).
Maintained by Katherine S. Pollard. Last updated 5 months ago.
22.1 match 6.05 score 54 scripts 5 dependentsmikewlcheung
metaSEM:Meta-Analysis using Structural Equation Modeling
A collection of functions for conducting meta-analysis using a structural equation modeling (SEM) approach via the 'OpenMx' and 'lavaan' packages. It also implements various procedures to perform meta-analytic structural equation modeling on the correlation and covariance matrices, see Cheung (2015) <doi:10.3389/fpsyg.2014.01521>.
Maintained by Mike Cheung. Last updated 9 days ago.
meta-analysismeta-analytic-semmissing-datamultilevel-modelsmultivariate-analysisstructural-equation-modelingstructural-equation-models
14.0 match 30 stars 9.43 score 208 scripts 1 dependentse-sensing
sits:Satellite Image Time Series Analysis for Earth Observation Data Cubes
An end-to-end toolkit for land use and land cover classification using big Earth observation data, based on machine learning methods applied to satellite image data cubes, as described in Simoes et al (2021) <doi:10.3390/rs13132428>. Builds regular data cubes from collections in AWS, Microsoft Planetary Computer, Brazil Data Cube, Copernicus Data Space Environment (CDSE), Digital Earth Africa, Digital Earth Australia, NASA HLS using the Spatio-temporal Asset Catalog (STAC) protocol (<https://stacspec.org/>) and the 'gdalcubes' R package developed by Appel and Pebesma (2019) <doi:10.3390/data4030092>. Supports visualization methods for images and time series and smoothing filters for dealing with noisy time series. Includes functions for quality assessment of training samples using self-organized maps as presented by Santos et al (2021) <doi:10.1016/j.isprsjprs.2021.04.014>. Includes methods to reduce training samples imbalance proposed by Chawla et al (2002) <doi:10.1613/jair.953>. Provides machine learning methods including support vector machines, random forests, extreme gradient boosting, multi-layer perceptrons, temporal convolutional neural networks proposed by Pelletier et al (2019) <doi:10.3390/rs11050523>, and temporal attention encoders by Garnot and Landrieu (2020) <doi:10.48550/arXiv.2007.00586>. Supports GPU processing of deep learning models using torch <https://torch.mlverse.org/>. Performs efficient classification of big Earth observation data cubes and includes functions for post-classification smoothing based on Bayesian inference as described by Camara et al (2024) <doi:10.3390/rs16234572>, and methods for active learning and uncertainty assessment. Supports region-based time series analysis using package supercells <https://jakubnowosad.com/supercells/>. Enables best practices for estimating area and assessing accuracy of land change as recommended by Olofsson et al (2014) <doi:10.1016/j.rse.2014.02.015>. Minimum recommended requirements: 16 GB RAM and 4 CPU dual-core.
Maintained by Gilberto Camara. Last updated 1 months ago.
big-earth-datacbersearth-observationeo-datacubesgeospatialimage-time-seriesland-cover-classificationlandsatplanetary-computerr-spatialremote-sensingrspatialsatellite-image-time-seriessatellite-imagerysentinel-2stac-apistac-catalogcpp
13.9 match 494 stars 9.50 score 384 scriptsmschubert
clustermq:Evaluate Function Calls on HPC Schedulers (LSF, SGE, SLURM, PBS/Torque)
Evaluate arbitrary function calls using workers on HPC schedulers in single line of code. All processing is done on the network without accessing the file system. Remote schedulers are supported via SSH.
Maintained by Michael Schubert. Last updated 24 days ago.
clusterhigh-performance-computinglsfsgeslurmsshzeromq3cpp
12.9 match 149 stars 10.23 score 253 scriptsmelodyaowen
crt2power:Designing Cluster-Randomized Trials with Two Continuous Co-Primary Outcomes
Provides methods for powering cluster-randomized trials with two continuous co-primary outcomes using five key design techniques. Includes functions for calculating required sample size and statistical power. For more details on methodology, see Owen et al. (2025) <doi:10.1002/sim.70015>, Yang et al. (2022) <doi:10.1111/biom.13692>, Pocock et al. (1987) <doi:10.2307/2531989>, Vickerstaff et al. (2019) <doi:10.1186/s12874-019-0754-4>, and Li et al. (2020) <doi:10.1111/biom.13212>.
Maintained by Melody Owen. Last updated 2 days ago.
36.5 match 3.60 score 2 scriptsbioc
ctc:Cluster and Tree Conversion.
Tools for export and import classification trees and clusters to other programs
Maintained by Antoine Lucas. Last updated 5 months ago.
microarrayclusteringclassificationdataimportvisualization
23.5 match 5.56 score 61 scripts 2 dependentskeefe-murphy
MoEClust:Gaussian Parsimonious Clustering Models with Covariates and a Noise Component
Clustering via parsimonious Gaussian Mixtures of Experts using the MoEClust models introduced by Murphy and Murphy (2020) <doi:10.1007/s11634-019-00373-8>. This package fits finite Gaussian mixture models with a formula interface for supplying gating and/or expert network covariates using a range of parsimonious covariance parameterisations from the GPCM family via the EM/CEM algorithm. Visualisation of the results of such models using generalised pairs plots and the inclusion of an additional noise component is also facilitated. A greedy forward stepwise search algorithm is provided for identifying the optimal model in terms of the number of components, the GPCM covariance parameterisation, and the subsets of gating/expert network covariates.
Maintained by Keefe Murphy. Last updated 11 days ago.
gaussian-mixture-modelsmixture-of-expertsmodel-based-clustering
19.9 match 7 stars 6.51 score 44 scripts 1 dependentsvinhtantran
monoClust:Perform Monothetic Clustering with Extensions to Circular Data
Implementation of the Monothetic Clustering algorithm (Chavent, 1998 <doi:10.1016/S0167-8655(98)00087-7>) on continuous data sets. A lot of extensions are included in the package, including applying Monothetic clustering on data sets with circular variables, visualizations with the results, and permutation and cross-validation based tests to support the decision on the number of clusters.
Maintained by Tan Tran. Last updated 4 years ago.
circular-variablesclustersggplot2monotheticplotvisualization
31.0 match 1 stars 4.18 score 7 scripts 1 dependentsbioc
DuplexDiscovereR:Analysis of the data from RNA duplex probing experiments
DuplexDiscovereR is a package designed for analyzing data from RNA cross-linking and proximity ligation protocols such as SPLASH, PARIS, LIGR-seq, and others. DuplexDiscovereR accepts input in the form of chimerically or split-aligned reads. It includes procedures for alignment classification, filtering, and efficient clustering of individual chimeric reads into duplex groups (DGs). Once DGs are identified, the package predicts RNA duplex formation and their hybridization energies. Additional metrics, such as p-values for random ligation hypothesis or mean DG alignment scores, can be calculated to rank final set of RNA duplexes. Data from multiple experiments or replicates can be processed separately and further compared to check the reproducibility of the experimental method.
Maintained by Egor Semenchenko. Last updated 2 months ago.
sequencingtranscriptomicsstructuralpredictionclusteringsplicedalignment
28.1 match 1 stars 4.60 score 5 scriptsbioc
flowMerge:Cluster Merging for Flow Cytometry Data
Merging of mixture components for model-based automated gating of flow cytometry data using the flowClust framework. Note: users should have a working copy of flowClust 2.0 installed.
Maintained by Greg Finak. Last updated 5 months ago.
immunooncologyclusteringflowcytometry
28.3 match 4.56 score 6 scripts 1 dependentskgoldfeld
simstudy:Simulation of Study Data
Simulates data sets in order to explore modeling techniques or better understand data generating processes. The user specifies a set of relationships between covariates, and generates data based on these specifications. The final data sets can represent data from randomized control trials, repeated measure (longitudinal) designs, and cluster randomized trials. Missingness can be generated using various mechanisms (MCAR, MAR, NMAR).
Maintained by Keith Goldfeld. Last updated 8 months ago.
data-generationdata-simulationsimulationstatistical-modelscpp
11.7 match 82 stars 11.00 score 972 scripts 1 dependentsbioc
iSEE:Interactive SummarizedExperiment Explorer
Create an interactive Shiny-based graphical user interface for exploring data stored in SummarizedExperiment objects, including row- and column-level metadata. The interface supports transmission of selections between plots and tables, code tracking, interactive tours, interactive or programmatic initialization, preservation of app state, and extensibility to new panel types via S4 classes. Special attention is given to single-cell data in a SingleCellExperiment object with visualization of dimensionality reduction results.
Maintained by Kevin Rue-Albrecht. Last updated 10 days ago.
cellbasedassaysclusteringdimensionreductionfeatureextractiongeneexpressionguiimmunooncologyshinyappssinglecelltranscriptiontranscriptomicsvisualizationdimension-reductionfeature-extractiongene-expressionhacktoberfesthuman-cell-atlasshinysingle-cell
10.0 match 225 stars 12.86 score 380 scripts 9 dependentsstemangiola
tidyseurat:Brings Seurat to the Tidyverse
It creates an invisible layer that allow to see the 'Seurat' object as tibble and interact seamlessly with the tidyverse.
Maintained by Stefano Mangiola. Last updated 8 months ago.
assaydomaininfrastructurernaseqdifferentialexpressiongeneexpressionnormalizationclusteringqualitycontrolsequencingtranscriptiontranscriptomicsdplyrggplot2pcapurrrsctseuratsingle-cellsingle-cell-rna-seqtibbletidyrtidyversetranscriptstsneumap
13.3 match 158 stars 9.66 score 398 scripts 1 dependentsevelinag
clusternomics:Integrative Clustering for Heterogeneous Biomedical Datasets
Integrative context-dependent clustering for heterogeneous biomedical datasets. Identifies local clustering structures in related datasets, and a global clusters that exist across the datasets.
Maintained by Evelina Gabasova. Last updated 8 years ago.
26.0 match 14 stars 4.92 score 12 scriptsms609
TreeDist:Calculate and Map Distances Between Phylogenetic Trees
Implements measures of tree similarity, including information-based generalized Robinson-Foulds distances (Phylogenetic Information Distance, Clustering Information Distance, Matching Split Information Distance; Smith 2020) <doi:10.1093/bioinformatics/btaa614>; Jaccard-Robinson-Foulds distances (Bocker et al. 2013) <doi:10.1007/978-3-642-40453-5_13>, including the Nye et al. (2006) metric <doi:10.1093/bioinformatics/bti720>; the Matching Split Distance (Bogdanowicz & Giaro 2012) <doi:10.1109/TCBB.2011.48>; Maximum Agreement Subtree distances; the Kendall-Colijn (2016) distance <doi:10.1093/molbev/msw124>, and the Nearest Neighbour Interchange (NNI) distance, approximated per Li et al. (1996) <doi:10.1007/3-540-61332-3_168>. Includes tools for visualizing mappings of tree space (Smith 2022) <doi:10.1093/sysbio/syab100>, for identifying islands of trees (Silva and Wilkinson 2021) <doi:10.1093/sysbio/syab015>, for calculating the median of sets of trees, and for computing the information content of trees and splits.
Maintained by Martin R. Smith. Last updated 1 months ago.
phylogeneticstree-distancephylogenetic-treestree-distancestreescpp
12.4 match 32 stars 10.32 score 97 scripts 5 dependentsyjunechoe
jlmerclusterperm:Cluster-Based Permutation Analysis for Densely Sampled Time Data
An implementation of fast cluster-based permutation analysis (CPA) for densely-sampled time data developed in Maris & Oostenveld, 2007 <doi:10.1016/j.jneumeth.2007.03.024>. Supports (generalized, mixed-effects) regression models for the calculation of timewise statistics. Provides both a wholesale and a piecemeal interface to the CPA procedure with an emphasis on interpretability and diagnostics. Integrates 'Julia' libraries 'MixedModels.jl' and 'GLM.jl' for performance improvements, with additional functionalities for interfacing with 'Julia' from 'R' powered by the 'JuliaConnectoR' package.
Maintained by June Choe. Last updated 6 days ago.
cluster-based-permutation-testeegeyetrackingmixed-effects-modelstimeseries
21.8 match 13 stars 5.86 score 14 scriptsdrordas
D2MCS:Data Driving Multiple Classifier System
Provides a novel framework to able to automatically develop and deploy an accurate Multiple Classifier System based on the feature-clustering distribution achieved from an input dataset. 'D2MCS' was developed focused on four main aspects: (i) the ability to determine an effective method to evaluate the independence of features, (ii) the identification of the optimal number of feature clusters, (iii) the training and tuning of ML models and (iv) the execution of voting schemes to combine the outputs of each classifier comprising the Multiple Classifier System.
Maintained by Miguel Ferreiro-Díaz. Last updated 3 years ago.
34.2 match 3.70 scorebioc
DECIPHER:Tools for curating, analyzing, and manipulating biological sequences
A toolset for deciphering and managing biological sequences.
Maintained by Erik Wright. Last updated 5 days ago.
clusteringgeneticssequencingdataimportvisualizationmicroarrayqualitycontrolqpcralignmentwholegenomemicrobiomeimmunooncologygenepredictionopenmp
15.0 match 8.40 score 1.1k scripts 14 dependentsbioc
SingleR:Reference-Based Single-Cell RNA-Seq Annotation
Performs unbiased cell type recognition from single-cell RNA sequencing data, by leveraging reference transcriptomic datasets of pure cell types to infer the cell of origin of each single cell independently.
Maintained by Aaron Lun. Last updated 28 days ago.
softwaresinglecellgeneexpressiontranscriptomicsclassificationclusteringannotationbioconductorsinglercpp
10.0 match 182 stars 12.60 score 2.1k scripts 1 dependents