Showing 200 of total 387 results (show query)

tidyverse

dplyr:A Grammar of Data Manipulation

A fast, consistent tool for working with data frame like objects, both in memory and out of memory.

Maintained by Hadley Wickham. Last updated 12 days ago.

data-manipulationgrammarcpp

14.3 match 4.8k stars 24.68 score 659k scripts 7.8k dependents

bioc

Moonlight2R:Identify oncogenes and tumor suppressor genes from omics data

The understanding of cancer mechanism requires the identification of genes playing a role in the development of the pathology and the characterization of their role (notably oncogenes and tumor suppressors). We present an updated version of the R/bioconductor package called MoonlightR, namely Moonlight2R, which returns a list of candidate driver genes for specific cancer types on the basis of omics data integration. The Moonlight framework contains a primary layer where gene expression data and information about biological processes are integrated to predict genes called oncogenic mediators, divided into putative tumor suppressors and putative oncogenes. This is done through functional enrichment analyses, gene regulatory networks and upstream regulator analyses to score the importance of well-known biological processes with respect to the studied cancer type. By evaluating the effect of the oncogenic mediators on biological processes or through random forests, the primary layer predicts two putative roles for the oncogenic mediators: i) tumor suppressor genes (TSGs) and ii) oncogenes (OCGs). As gene expression data alone is not enough to explain the deregulation of the genes, a second layer of evidence is needed. We have automated the integration of a secondary mutational layer through new functionalities in Moonlight2R. These functionalities analyze mutations in the cancer cohort and classifies these into driver and passenger mutations using the driver mutation prediction tool, CScape-somatic. Those oncogenic mediators with at least one driver mutation are retained as the driver genes. As a consequence, this methodology does not only identify genes playing a dual role (e.g. TSG in one cancer type and OCG in another) but also helps in elucidating the biological processes underlying their specific roles. In particular, Moonlight2R can be used to discover OCGs and TSGs in the same cancer type. This may for instance help in answering the question whether some genes change role between early stages (I, II) and late stages (III, IV). In the future, this analysis could be useful to determine the causes of different resistances to chemotherapeutic treatments. An additional mechanistic layer evaluates if there are mutations affecting the protein stability of the transcription factors (TFs) of the TSGs and OCGs, as that may have an effect on the expression of the genes.

Maintained by Matteo Tiberti. Last updated 2 months ago.

dnamethylationdifferentialmethylationgeneregulationgeneexpressionmethylationarraydifferentialexpressionpathwaysnetworksurvivalgenesetenrichmentnetworkenrichment

22.7 match 5 stars 6.59 score 43 scripts

elbersb

tidylog:Logging for 'dplyr' and 'tidyr' Functions

Provides feedback about 'dplyr' and 'tidyr' operations.

Maintained by Benjamin Elbers. Last updated 9 months ago.

dplyrtidyrtidyversewrapper-functions

6.7 match 593 stars 10.23 score 1.7k scripts

nathaneastwood

poorman:A Poor Man's Dependency Free Recreation of 'dplyr'

A replication of key functionality from 'dplyr' and the wider 'tidyverse' using only 'base'.

Maintained by Nathan Eastwood. Last updated 1 years ago.

base-rdata-manipulationgrammar

5.3 match 341 stars 10.79 score 156 scripts 27 dependents

bioc

RESOLVE:RESOLVE: An R package for the efficient analysis of mutational signatures from cancer genomes

Cancer is a genetic disease caused by somatic mutations in genes controlling key biological functions such as cellular growth and division. Such mutations may arise both through cell-intrinsic and exogenous processes, generating characteristic mutational patterns over the genome named mutational signatures. The study of mutational signatures have become a standard component of modern genomics studies, since it can reveal which (environmental and endogenous) mutagenic processes are active in a tumor, and may highlight markers for therapeutic response. Mutational signatures computational analysis presents many pitfalls. First, the task of determining the number of signatures is very complex and depends on heuristics. Second, several signatures have no clear etiology, casting doubt on them being computational artifacts rather than due to mutagenic processes. Last, approaches for signatures assignment are greatly influenced by the set of signatures used for the analysis. To overcome these limitations, we developed RESOLVE (Robust EStimation Of mutationaL signatures Via rEgularization), a framework that allows the efficient extraction and assignment of mutational signatures. RESOLVE implements a novel algorithm that enables (i) the efficient extraction, (ii) exposure estimation, and (iii) confidence assessment during the computational inference of mutational signatures.

Maintained by Luca De Sano. Last updated 5 months ago.

biomedicalinformaticssomaticmutation

10.7 match 1 stars 4.60 score 3 scripts

markfairbanks

tidytable:Tidy Interface to 'data.table'

A tidy interface to 'data.table', giving users the speed of 'data.table' while using tidyverse-like syntax.

Maintained by Mark Fairbanks. Last updated 2 months ago.

3.0 match 458 stars 11.41 score 732 scripts 10 dependents

mitchelloharawild

vitae:Curriculum Vitae for R Markdown

Provides templates and functions to simplify the production and maintenance of curriculum vitae.

Maintained by Mitchell OHara-Wild. Last updated 9 months ago.

cvozunconf18resumeunconf

3.0 match 1.2k stars 10.78 score 556 scripts

bodkan

slendr:A Simulation Framework for Spatiotemporal Population Genetics

A framework for simulating spatially explicit genomic data which leverages real cartographic information for programmatic and visual encoding of spatiotemporal population dynamics on real geographic landscapes. Population genetic models are then automatically executed by the 'SLiM' software by Haller et al. (2019) <doi:10.1093/molbev/msy228> behind the scenes, using a custom built-in simulation 'SLiM' script. Additionally, fully abstract spatial models not tied to a specific geographic location are supported, and users can also simulate data from standard, non-spatial, random-mating models. These can be simulated either with the 'SLiM' built-in back-end script, or using an efficient coalescent population genetics simulator 'msprime' by Baumdicker et al. (2022) <doi:10.1093/genetics/iyab229> with a custom-built 'Python' script bundled with the R package. Simulated genomic data is saved in a tree-sequence format and can be loaded, manipulated, and summarised using tree-sequence functionality via an R interface to the 'Python' module 'tskit' by Kelleher et al. (2019) <doi:10.1038/s41588-019-0483-y>. Complete model configuration, simulation and analysis pipelines can be therefore constructed without a need to leave the R environment, eliminating friction between disparate tools for population genetic simulations and data analysis.

Maintained by Martin Petr. Last updated 12 days ago.

popgenpopulation-geneticssimulationsspatial-statistics

3.5 match 56 stars 9.15 score 88 scripts

nepem-ufsc

metan:Multi Environment Trials Analysis

Performs stability analysis of multi-environment trial data using parametric and non-parametric methods. Parametric methods includes Additive Main Effects and Multiplicative Interaction (AMMI) analysis by Gauch (2013) <doi:10.2135/cropsci2013.04.0241>, Ecovalence by Wricke (1965), Genotype plus Genotype-Environment (GGE) biplot analysis by Yan & Kang (2003) <doi:10.1201/9781420040371>, geometric adaptability index by Mohammadi & Amri (2008) <doi:10.1007/s10681-007-9600-6>, joint regression analysis by Eberhart & Russel (1966) <doi:10.2135/cropsci1966.0011183X000600010011x>, genotypic confidence index by Annicchiarico (1992), Murakami & Cruz's (2004) method, power law residuals (POLAR) statistics by Doring et al. (2015) <doi:10.1016/j.fcr.2015.08.005>, scale-adjusted coefficient of variation by Doring & Reckling (2018) <doi:10.1016/j.eja.2018.06.007>, stability variance by Shukla (1972) <doi:10.1038/hdy.1972.87>, weighted average of absolute scores by Olivoto et al. (2019a) <doi:10.2134/agronj2019.03.0220>, and multi-trait stability index by Olivoto et al. (2019b) <doi:10.2134/agronj2019.03.0221>. Non-parametric methods includes superiority index by Lin & Binns (1988) <doi:10.4141/cjps88-018>, nonparametric measures of phenotypic stability by Huehn (1990) <doi:10.1007/BF00024241>, TOP third statistic by Fox et al. (1990) <doi:10.1007/BF00040364>. Functions for computing biometrical analysis such as path analysis, canonical correlation, partial correlation, clustering analysis, and tools for inspecting, manipulating, summarizing and plotting typical multi-environment trial data are also provided.

Maintained by Tiago Olivoto. Last updated 9 days ago.

3.0 match 2 stars 9.48 score 1.3k scripts 2 dependents

yulab-smu

ggfun:Miscellaneous Functions for 'ggplot2'

Useful functions and utilities for 'ggplot' object (e.g., geometric layers, themes, and utilities to edit the object).

Maintained by Guangchuang Yu. Last updated 2 months ago.

2.3 match 18 stars 10.41 score 58 scripts 151 dependents

fawda123

rStrava:Access the 'Strava' API

Functions to access data from the 'Strava v3 API' <https://developers.strava.com/>.

Maintained by Marcus W. Beck. Last updated 5 months ago.

3.0 match 155 stars 7.15 score 57 scripts

ycroissant

dfidx:Indexed Data Frames

Provides extended data frames, with a special data frame column which contains two indexes, with potentially a nesting structure.

Maintained by Yves Croissant. Last updated 7 months ago.

3.0 match 2 stars 6.85 score 44 scripts 18 dependents

poissonconsulting

mcmcdata:Manipulate MCMC Samples and Data Frames

Manipulates Monte Carlo Markov Chain samples and associated data frames.

Maintained by Joe Thorley. Last updated 2 months ago.

5.3 match 1 stars 3.56 score 4 scripts 4 dependents