Showing 200 of total 1947 results (show query)

topepo

caret:Classification and Regression Training

Misc functions for training and plotting classification and regression models.

Maintained by Max Kuhn. Last updated 4 months ago.

1.6k stars 19.24 score 61k scripts 303 dependents

fmmattioni

downloadthis:Implement Download Buttons in 'rmarkdown'

Implement download buttons in HTML output from 'rmarkdown' without the need for 'runtime:shiny'.

Maintained by Felipe Mattioni Maturana. Last updated 6 months ago.

146 stars 9.63 score 856 scripts 1 dependents

e-sensing

sits:Satellite Image Time Series Analysis for Earth Observation Data Cubes

An end-to-end toolkit for land use and land cover classification using big Earth observation data, based on machine learning methods applied to satellite image data cubes, as described in Simoes et al (2021) <doi:10.3390/rs13132428>. Builds regular data cubes from collections in AWS, Microsoft Planetary Computer, Brazil Data Cube, Copernicus Data Space Environment (CDSE), Digital Earth Africa, Digital Earth Australia, NASA HLS using the Spatio-temporal Asset Catalog (STAC) protocol (<https://stacspec.org/>) and the 'gdalcubes' R package developed by Appel and Pebesma (2019) <doi:10.3390/data4030092>. Supports visualization methods for images and time series and smoothing filters for dealing with noisy time series. Includes functions for quality assessment of training samples using self-organized maps as presented by Santos et al (2021) <doi:10.1016/j.isprsjprs.2021.04.014>. Includes methods to reduce training samples imbalance proposed by Chawla et al (2002) <doi:10.1613/jair.953>. Provides machine learning methods including support vector machines, random forests, extreme gradient boosting, multi-layer perceptrons, temporal convolutional neural networks proposed by Pelletier et al (2019) <doi:10.3390/rs11050523>, and temporal attention encoders by Garnot and Landrieu (2020) <doi:10.48550/arXiv.2007.00586>. Supports GPU processing of deep learning models using torch <https://torch.mlverse.org/>. Performs efficient classification of big Earth observation data cubes and includes functions for post-classification smoothing based on Bayesian inference as described by Camara et al (2024) <doi:10.3390/rs16234572>, and methods for active learning and uncertainty assessment. Supports region-based time series analysis using package supercells <https://jakubnowosad.com/supercells/>. Enables best practices for estimating area and assessing accuracy of land change as recommended by Olofsson et al (2014) <doi:10.1016/j.rse.2014.02.015>. Minimum recommended requirements: 16 GB RAM and 4 CPU dual-core.

Maintained by Gilberto Camara. Last updated 2 months ago.

big-earth-datacbersearth-observationeo-datacubesgeospatialimage-time-seriesland-cover-classificationlandsatplanetary-computerr-spatialremote-sensingrspatialsatellite-image-time-seriessatellite-imagerysentinel-2stac-apistac-catalogcpp

494 stars 9.50 score 384 scripts

bodkan

slendr:A Simulation Framework for Spatiotemporal Population Genetics

A framework for simulating spatially explicit genomic data which leverages real cartographic information for programmatic and visual encoding of spatiotemporal population dynamics on real geographic landscapes. Population genetic models are then automatically executed by the 'SLiM' software by Haller et al. (2019) <doi:10.1093/molbev/msy228> behind the scenes, using a custom built-in simulation 'SLiM' script. Additionally, fully abstract spatial models not tied to a specific geographic location are supported, and users can also simulate data from standard, non-spatial, random-mating models. These can be simulated either with the 'SLiM' built-in back-end script, or using an efficient coalescent population genetics simulator 'msprime' by Baumdicker et al. (2022) <doi:10.1093/genetics/iyab229> with a custom-built 'Python' script bundled with the R package. Simulated genomic data is saved in a tree-sequence format and can be loaded, manipulated, and summarised using tree-sequence functionality via an R interface to the 'Python' module 'tskit' by Kelleher et al. (2019) <doi:10.1038/s41588-019-0483-y>. Complete model configuration, simulation and analysis pipelines can be therefore constructed without a need to leave the R environment, eliminating friction between disparate tools for population genetic simulations and data analysis.

Maintained by Martin Petr. Last updated 3 days ago.

popgenpopulation-geneticssimulationsspatial-statistics

56 stars 9.13 score 88 scripts

pik-piam

remind2:The REMIND R package (2nd generation)

Contains the REMIND-specific routines for data and model output manipulation.

Maintained by Renato Rodrigues. Last updated 15 hours ago.

8.89 score 161 scripts 5 dependents

ropensci

weatherOz:An API Client for Australian Weather and Climate Data Resources

Provides automated downloading, parsing and formatting of weather data for Australia through API endpoints provided by the Department of Primary Industries and Regional Development ('DPIRD') of Western Australia and by the Science and Technology Division of the Queensland Government's Department of Environment and Science ('DES'). As well as the Bureau of Meteorology ('BOM') of the Australian government precis and coastal forecasts, and downloading and importing radar and satellite imagery files. 'DPIRD' weather data are accessed through public 'APIs' provided by 'DPIRD', <https://www.agric.wa.gov.au/weather-api-20>, providing access to weather station data from the 'DPIRD' weather station network. Australia-wide weather data are based on data from the Australian Bureau of Meteorology ('BOM') data and accessed through 'SILO' (Scientific Information for Land Owners) Jeffrey et al. (2001) <doi:10.1016/S1364-8152(01)00008-1>. 'DPIRD' data are made available under a Creative Commons Attribution 3.0 Licence (CC BY 3.0 AU) license <https://creativecommons.org/licenses/by/3.0/au/deed.en>. SILO data are released under a Creative Commons Attribution 4.0 International licence (CC BY 4.0) <https://creativecommons.org/licenses/by/4.0/>. 'BOM' data are (c) Australian Government Bureau of Meteorology and released under a Creative Commons (CC) Attribution 3.0 licence or Public Access Licence ('PAL') as appropriate, see <http://www.bom.gov.au/other/copyright.shtml> for further details.

Maintained by Rodrigo Pires. Last updated 1 months ago.

dpirdbommeteorological-dataweather-forecastaustraliaweatherweather-datameteorologywestern-australiaaustralia-bureau-of-meteorologywestern-australia-agricultureaustralia-agricultureaustralia-climateaustralia-weatherapi-clientclimatedatarainfallweather-api

31 stars 8.47 score 40 scripts

r-dbi

DBItest:Testing DBI Backends

A helper that tests DBI back ends for conformity to the interface.

Maintained by Kirill Mรผller. Last updated 15 days ago.

databasetesting

24 stars 8.21 score 11 scripts

ropensci

FedData:Download Geospatial Data Available from Several Federated Data Sources

Download geospatial data available from several federated data sources (mainly sources maintained by the US Federal government). Currently, the package enables extraction from nine datasets: The National Elevation Dataset digital elevation models (<https://www.usgs.gov/3d-elevation-program> 1 and 1/3 arc-second; USGS); The National Hydrography Dataset (<https://www.usgs.gov/national-hydrography/national-hydrography-dataset>; USGS); The Soil Survey Geographic (SSURGO) database from the National Cooperative Soil Survey (<https://websoilsurvey.sc.egov.usda.gov/>; NCSS), which is led by the Natural Resources Conservation Service (NRCS) under the USDA; the Global Historical Climatology Network (<https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily>; GHCN), coordinated by National Climatic Data Center at NOAA; the Daymet gridded estimates of daily weather parameters for North America, version 4, available from the Oak Ridge National Laboratory's Distributed Active Archive Center (<https://daymet.ornl.gov/>; DAAC); the International Tree Ring Data Bank; the National Land Cover Database (<https://www.mrlc.gov/>; NLCD); the Cropland Data Layer from the National Agricultural Statistics Service (<https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php>; NASS); and the PAD-US dataset of protected area boundaries (<https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-data-overview>; USGS).

Maintained by R. Kyle Bocinsky. Last updated 4 months ago.

peer-reviewed

100 stars 8.20 score 364 scripts

davidsjoberg

hablar:Non-Astonishing Results in R

Simple tools for converting columns to new data types. Intuitive functions for columns with missing values.

Maintained by David Sjoberg. Last updated 2 years ago.

59 stars 8.20 score 468 scripts

pik-piam

mip:Comparison of multi-model runs

Package contains generic functions to produce comparison plots of multi-model runs.

Maintained by David Klein. Last updated 15 hours ago.

1 stars 8.11 score 70 scripts 21 dependents

pik-piam

magpie4:MAgPIE outputs R package for MAgPIE version 4.x

Common output routines for extracting results from the MAgPIE framework (versions 4.x).

Maintained by Benjamin Leon Bodirsky. Last updated 20 hours ago.

2 stars 7.90 score 254 scripts 9 dependents