Showing 200 of total 274 results (show query)

r-spatial

spdep:Spatial Dependence: Weighting Schemes, Statistics

A collection of functions to create spatial weights matrix objects from polygon 'contiguities', from point patterns by distance and tessellations, for summarizing these objects, and for permitting their use in spatial data analysis, including regional aggregation by minimum spanning tree; a collection of tests for spatial 'autocorrelation', including global 'Morans I' and 'Gearys C' proposed by 'Cliff' and 'Ord' (1973, ISBN: 0850860369) and (1981, ISBN: 0850860814), 'Hubert/Mantel' general cross product statistic, Empirical Bayes estimates and 'Assunção/Reis' (1999) <doi:10.1002/(SICI)1097-0258(19990830)18:16%3C2147::AID-SIM179%3E3.0.CO;2-I> Index, 'Getis/Ord' G ('Getis' and 'Ord' 1992) <doi:10.1111/j.1538-4632.1992.tb00261.x> and multicoloured join count statistics, 'APLE' ('Li 'et al.' ) <doi:10.1111/j.1538-4632.2007.00708.x>, local 'Moran's I', 'Gearys C' ('Anselin' 1995) <doi:10.1111/j.1538-4632.1995.tb00338.x> and 'Getis/Ord' G ('Ord' and 'Getis' 1995) <doi:10.1111/j.1538-4632.1995.tb00912.x>, 'saddlepoint' approximations ('Tiefelsdorf' 2002) <doi:10.1111/j.1538-4632.2002.tb01084.x> and exact tests for global and local 'Moran's I' ('Bivand et al.' 2009) <doi:10.1016/j.csda.2008.07.021> and 'LOSH' local indicators of spatial heteroscedasticity ('Ord' and 'Getis') <doi:10.1007/s00168-011-0492-y>. The implementation of most of these measures is described in 'Bivand' and 'Wong' (2018) <doi:10.1007/s11749-018-0599-x>, with further extensions in 'Bivand' (2022) <doi:10.1111/gean.12319>. 'Lagrange' multiplier tests for spatial dependence in linear models are provided ('Anselin et al'. 1996) <doi:10.1016/0166-0462(95)02111-6>, as are 'Rao' score tests for hypothesised spatial 'Durbin' models based on linear models ('Koley' and 'Bera' 2023) <doi:10.1080/17421772.2023.2256810>. A local indicators for categorical data (LICD) implementation based on 'Carrer et al.' (2021) <doi:10.1016/j.jas.2020.105306> and 'Bivand et al.' (2017) <doi:10.1016/j.spasta.2017.03.003> was added in 1.3-7. From 'spdep' and 'spatialreg' versions >= 1.2-1, the model fitting functions previously present in this package are defunct in 'spdep' and may be found in 'spatialreg'.

Maintained by Roger Bivand. Last updated 19 days ago.

spatial-autocorrelationspatial-dependencespatial-weights

22.7 match 131 stars 16.62 score 6.0k scripts 107 dependents

cran

nlme:Linear and Nonlinear Mixed Effects Models

Fit and compare Gaussian linear and nonlinear mixed-effects models.

Maintained by R Core Team. Last updated 2 months ago.

fortran

6.0 match 6 stars 13.00 score 13k scripts 8.7k dependents

laplacesdemonr

LaplacesDemon:Complete Environment for Bayesian Inference

Provides a complete environment for Bayesian inference using a variety of different samplers (see ?LaplacesDemon for an overview).

Maintained by Henrik Singmann. Last updated 12 months ago.

3.8 match 93 stars 13.45 score 1.8k scripts 60 dependents

sergiofinances

actfts:Autocorrelation Tools Featured for Time Series

The 'actfts' package provides tools for performing autocorrelation analysis of time series data. It includes functions to compute and visualize the autocorrelation function (ACF) and the partial autocorrelation function (PACF). Additionally, it performs the Dickey-Fuller, KPSS, and Phillips-Perron unit root tests to assess the stationarity of time series. Theoretical foundations are based on Box and Cox (1964) <doi:10.1111/j.2517-6161.1964.tb00553.x>, Box and Jenkins (1976) <isbn:978-0-8162-1234-2>, and Box and Pierce (1970) <doi:10.1080/01621459.1970.10481180>. Statistical methods are also drawn from Kolmogorov (1933) <doi:10.1007/BF00993594>, Kwiatkowski et al. (1992) <doi:10.1016/0304-4076(92)90104-Y>, and Ljung and Box (1978) <doi:10.1093/biomet/65.2.297>. The package integrates functions from 'forecast' (Hyndman & Khandakar, 2008) <https://CRAN.R-project.org/package=forecast>, 'tseries' (Trapletti & Hornik, 2020) <https://CRAN.R-project.org/package=tseries>, 'xts' (Ryan & Ulrich, 2020) <https://CRAN.R-project.org/package=xts>, and 'stats' (R Core Team, 2023) <https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html>. Additionally, it provides visualization tools via 'plotly' (Sievert, 2020) <https://CRAN.R-project.org/package=plotly> and 'reactable' (Glaz, 2023) <https://CRAN.R-project.org/package=reactable>. The package also incorporates macroeconomic datasets from the U.S. Bureau of Economic Analysis: Disposable Personal Income (DPI) <https://fred.stlouisfed.org/series/DPI>, Gross Domestic Product (GDP) <https://fred.stlouisfed.org/series/GDP>, and Personal Consumption Expenditures (PCEC) <https://fred.stlouisfed.org/series/PCEC>.

Maintained by Sergio Sierra. Last updated 12 days ago.

7.6 match 1 stars 4.74 score

cdriveraus

ctsem:Continuous Time Structural Equation Modelling

Hierarchical continuous (and discrete) time state space modelling, for linear and nonlinear systems measured by continuous variables, with limited support for binary data. The subject specific dynamic system is modelled as a stochastic differential equation (SDE) or difference equation, measurement models are typically multivariate normal factor models. Linear mixed effects SDE's estimated via maximum likelihood and optimization are the default. Nonlinearities, (state dependent parameters) and random effects on all parameters are possible, using either max likelihood / max a posteriori optimization (with optional importance sampling) or Stan's Hamiltonian Monte Carlo sampling. See <https://github.com/cdriveraus/ctsem/raw/master/vignettes/hierarchicalmanual.pdf> for details. Priors may be used. For the conceptual overview of the hierarchical Bayesian linear SDE approach, see <https://www.researchgate.net/publication/324093594_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling>. Exogenous inputs may also be included, for an overview of such possibilities see <https://www.researchgate.net/publication/328221807_Understanding_the_Time_Course_of_Interventions_with_Continuous_Time_Dynamic_Models> . Stan based functions are not available on 32 bit Windows systems at present. <https://cdriver.netlify.app/> contains some tutorial blog posts.

Maintained by Charles Driver. Last updated 12 days ago.

stochastic-differential-equationstime-seriescpp

3.5 match 42 stars 9.58 score 366 scripts 1 dependents

r-forge

car:Companion to Applied Regression

Functions to Accompany J. Fox and S. Weisberg, An R Companion to Applied Regression, Third Edition, Sage, 2019.

Maintained by John Fox. Last updated 5 months ago.

1.8 match 15.29 score 43k scripts 901 dependents

cran

ftsa:Functional Time Series Analysis

Functions for visualizing, modeling, forecasting and hypothesis testing of functional time series.

Maintained by Han Lin Shang. Last updated 22 days ago.

4.0 match 6 stars 5.95 score 96 scripts 10 dependents

ropensci

waywiser:Ergonomic Methods for Assessing Spatial Models

Assessing predictive models of spatial data can be challenging, both because these models are typically built for extrapolating outside the original region represented by training data and due to potential spatially structured errors, with "hot spots" of higher than expected error clustered geographically due to spatial structure in the underlying data. Methods are provided for assessing models fit to spatial data, including approaches for measuring the spatial structure of model errors, assessing model predictions at multiple spatial scales, and evaluating where predictions can be made safely. Methods are particularly useful for models fit using the 'tidymodels' framework. Methods include Moran's I ('Moran' (1950) <doi:10.2307/2332142>), Geary's C ('Geary' (1954) <doi:10.2307/2986645>), Getis-Ord's G ('Ord' and 'Getis' (1995) <doi:10.1111/j.1538-4632.1995.tb00912.x>), agreement coefficients from 'Ji' and Gallo (2006) (<doi: 10.14358/PERS.72.7.823>), agreement metrics from 'Willmott' (1981) (<doi: 10.1080/02723646.1981.10642213>) and 'Willmott' 'et' 'al'. (2012) (<doi: 10.1002/joc.2419>), an implementation of the area of applicability methodology from 'Meyer' and 'Pebesma' (2021) (<doi:10.1111/2041-210X.13650>), and an implementation of multi-scale assessment as described in 'Riemann' 'et' 'al'. (2010) (<doi:10.1016/j.rse.2010.05.010>).

Maintained by Michael Mahoney. Last updated 13 days ago.

spatialspatial-analysistidymodelstidyverse

3.1 match 37 stars 6.87 score 19 scripts

eckleyi

LS2W:Locally Stationary Two-Dimensional Wavelet Process Estimation Scheme

Estimates two-dimensional local wavelet spectra.

Maintained by Idris Eckley. Last updated 2 years ago.

8.9 match 1.88 score 25 scripts 1 dependents

sareameri

ftrCOOL:Feature Extraction from Biological Sequences

Extracts features from biological sequences. It contains most features which are presented in related work and also includes features which have never been introduced before. It extracts numerous features from nucleotide and peptide sequences. Each feature converts the input sequences to discrete numbers in order to use them as predictors in machine learning models. There are many features and information which are hidden inside a sequence. Utilizing the package, users can convert biological sequences to discrete models based on chosen properties. References: 'iLearn' 'Z. Chen et al.' (2019) <DOI:10.1093/bib/bbz041>. 'iFeature' 'Z. Chen et al.' (2018) <DOI:10.1093/bioinformatics/bty140>. <https://CRAN.R-project.org/package=rDNAse>. 'PseKRAAC' 'Y. Zuo et al.' 'PseKRAAC: a flexible web server for generating pseudo K-tuple reduced amino acids composition' (2017) <DOI:10.1093/bioinformatics/btw564>. 'iDNA6mA-PseKNC' 'P. Feng et al.' 'iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC' (2019) <DOI:10.1016/j.ygeno.2018.01.005>. 'I. Dubchak et al.' 'Prediction of protein folding class using global description of amino acid sequence' (1995) <DOI:10.1073/pnas.92.19.8700>. 'W. Chen et al.' 'Identification and analysis of the N6-methyladenosine in the Saccharomyces cerevisiae transcriptome' (2015) <DOI:10.1038/srep13859>.

Maintained by Sare Amerifar. Last updated 3 years ago.

7.2 match 2 stars 2.26 score 1 scripts 3 dependents

cran

SSDforR:Functions to Analyze Single System Data

Functions to visually and statistically analyze single system data.

Maintained by Charles Auerbach. Last updated 4 hours ago.

8.0 match 1.62 score

angusian

ltsa:Linear Time Series Analysis

Methods of developing linear time series modelling. Methods are given for loglikelihood computation, forecasting and simulation.

Maintained by A.I. McLeod. Last updated 6 months ago.

3.8 match 3.43 score 47 scripts 11 dependents

s-mckay-curtis

mcmcplots:Create Plots from MCMC Output

Functions for convenient plotting and viewing of MCMC output.

Maintained by S. McKay Curtis. Last updated 7 years ago.

1.9 match 4 stars 6.53 score 880 scripts 4 dependents

a91quaini

intrinsicFRP:An R Package for Factor Model Asset Pricing

Functions for evaluating and testing asset pricing models, including estimation and testing of factor risk premia, selection of "strong" risk factors (factors having nonzero population correlation with test asset returns), heteroskedasticity and autocorrelation robust covariance matrix estimation and testing for model misspecification and identification. The functions for estimating and testing factor risk premia implement the Fama-MachBeth (1973) <doi:10.1086/260061> two-pass approach, the misspecification-robust approaches of Kan-Robotti-Shanken (2013) <doi:10.1111/jofi.12035>, and the approaches based on tradable factor risk premia of Quaini-Trojani-Yuan (2023) <doi:10.2139/ssrn.4574683>. The functions for selecting the "strong" risk factors are based on the Oracle estimator of Quaini-Trojani-Yuan (2023) <doi:10.2139/ssrn.4574683> and the factor screening procedure of Gospodinov-Kan-Robotti (2014) <doi:10.2139/ssrn.2579821>. The functions for evaluating model misspecification implement the HJ model misspecification distance of Kan-Robotti (2008) <doi:10.1016/j.jempfin.2008.03.003>, which is a modification of the prominent Hansen-Jagannathan (1997) <doi:10.1111/j.1540-6261.1997.tb04813.x> distance. The functions for testing model identification specialize the Kleibergen-Paap (2006) <doi:10.1016/j.jeconom.2005.02.011> and the Chen-Fang (2019) <doi:10.1111/j.1540-6261.1997.tb04813.x> rank test to the regression coefficient matrix of test asset returns on risk factors. Finally, the function for heteroskedasticity and autocorrelation robust covariance estimation implements the Newey-West (1994) <doi:10.2307/2297912> covariance estimator.

Maintained by Alberto Quaini. Last updated 8 months ago.

factor-modelsfactor-selectionfinanceidentification-testsmisspecificationrcpparmadillorisk-premiumopenblascppopenmp

2.6 match 7 stars 4.45 score 1 scripts

bioxgeo

geodiv:Methods for Calculating Gradient Surface Metrics

Methods for calculating gradient surface metrics for continuous analysis of landscape features.

Maintained by Annie C. Smith. Last updated 1 years ago.

cpp

1.9 match 11 stars 5.88 score 23 scripts 1 dependents

jomulder

BFpack:Flexible Bayes Factor Testing of Scientific Expectations

Implementation of default Bayes factors for testing statistical hypotheses under various statistical models. The package is intended for applied quantitative researchers in the social and behavioral sciences, medical research, and related fields. The Bayes factor tests can be executed for statistical models such as univariate and multivariate normal linear models, correlation analysis, generalized linear models, special cases of linear mixed models, survival models, relational event models. Parameters that can be tested are location parameters (e.g., group means, regression coefficients), variances (e.g., group variances), and measures of association (e.g,. polychoric/polyserial/biserial/tetrachoric/product moments correlations), among others. The statistical underpinnings are described in O'Hagan (1995) <DOI:10.1111/j.2517-6161.1995.tb02017.x>, De Santis and Spezzaferri (2001) <DOI:10.1016/S0378-3758(00)00240-8>, Mulder and Xin (2022) <DOI:10.1080/00273171.2021.1904809>, Mulder and Gelissen (2019) <DOI:10.1080/02664763.2021.1992360>, Mulder (2016) <DOI:10.1016/j.jmp.2014.09.004>, Mulder and Fox (2019) <DOI:10.1214/18-BA1115>, Mulder and Fox (2013) <DOI:10.1007/s11222-011-9295-3>, Boeing-Messing, van Assen, Hofman, Hoijtink, and Mulder (2017) <DOI:10.1037/met0000116>, Hoijtink, Mulder, van Lissa, and Gu (2018) <DOI:10.1037/met0000201>, Gu, Mulder, and Hoijtink (2018) <DOI:10.1111/bmsp.12110>, Hoijtink, Gu, and Mulder (2018) <DOI:10.1111/bmsp.12145>, and Hoijtink, Gu, Mulder, and Rosseel (2018) <DOI:10.1037/met0000187>. When using the packages, please refer to the package Mulder et al. (2021) <DOI:10.18637/jss.v100.i18> and the relevant methodological papers.

Maintained by Joris Mulder. Last updated 1 months ago.

fortranopenblas

1.3 match 15 stars 8.24 score 55 scripts 3 dependents

thomaswpike

social:Social Autocorrelation

A set of functions to quantify and visualise social autocorrelation.

Maintained by Tom Pike. Last updated 8 years ago.

cpp

4.3 match 2.00 score 10 scripts

njtierney

mmcc:tidy mcmc.list using data.table

Tidy up, diagnose, and visualise your mcmc samples quickly and easily so you can get on with your analysis.

Maintained by Nicholas Tierney. Last updated 3 years ago.

1.8 match 24 stars 4.68 score 10 scripts

r-spatial

spatialreg:Spatial Regression Analysis

A collection of all the estimation functions for spatial cross-sectional models (on lattice/areal data using spatial weights matrices) contained up to now in 'spdep'. These model fitting functions include maximum likelihood methods for cross-sectional models proposed by 'Cliff' and 'Ord' (1973, ISBN:0850860369) and (1981, ISBN:0850860814), fitting methods initially described by 'Ord' (1975) <doi:10.1080/01621459.1975.10480272>. The models are further described by 'Anselin' (1988) <doi:10.1007/978-94-015-7799-1>. Spatial two stage least squares and spatial general method of moment models initially proposed by 'Kelejian' and 'Prucha' (1998) <doi:10.1023/A:1007707430416> and (1999) <doi:10.1111/1468-2354.00027> are provided. Impact methods and MCMC fitting methods proposed by 'LeSage' and 'Pace' (2009) <doi:10.1201/9781420064254> are implemented for the family of cross-sectional spatial regression models. Methods for fitting the log determinant term in maximum likelihood and MCMC fitting are compared by 'Bivand et al.' (2013) <doi:10.1111/gean.12008>, and model fitting methods by 'Bivand' and 'Piras' (2015) <doi:10.18637/jss.v063.i18>; both of these articles include extensive lists of references. A recent review is provided by 'Bivand', 'Millo' and 'Piras' (2021) <doi:10.3390/math9111276>. 'spatialreg' >= 1.1-* corresponded to 'spdep' >= 1.1-1, in which the model fitting functions were deprecated and passed through to 'spatialreg', but masked those in 'spatialreg'. From versions 1.2-*, the functions have been made defunct in 'spdep'. From version 1.3-6, add Anselin-Kelejian (1997) test to `stsls` for residual spatial autocorrelation <doi:10.1177/016001769702000109>.

Maintained by Roger Bivand. Last updated 3 days ago.

bayesianimpactsmaximum-likelihoodspatial-dependencespatial-econometricsspatial-regressionopenblas

0.5 match 46 stars 12.92 score 916 scripts 24 dependents

stan-dev

posteriordb:R functionality for posteriordb

R functionality of easy handling of the posteriordb posteriors.

Maintained by Mans Magnusson. Last updated 2 years ago.

1.8 match 8 stars 3.37 score 59 scripts