Showing 102 of total 102 results (show query)

ggobi

tourr:Tour Methods for Multivariate Data Visualisation

Implements geodesic interpolation and basis generation functions that allow you to create new tour methods from R.

Maintained by Dianne Cook. Last updated 17 days ago.

4.1 match 65 stars 11.17 score 426 scripts 9 dependents

lucasvenez

precintcon:Precipitation Intensity, Concentration and Anomaly Analysis

It contains functions to analyze the precipitation intensity, concentration and anomaly.

Maintained by Lucas Venezian Povoa. Last updated 9 years ago.

9.2 match 10 stars 4.28 score 38 scripts

drwolf85

HRTnomaly:Historical, Relational, and Tail Anomaly-Detection Algorithms

The presence of outliers in a dataset can substantially bias the results of statistical analyses. To correct for outliers, micro edits are manually performed on all records. A set of constraints and decision rules is typically used to aid the editing process. However, straightforward decision rules might overlook anomalies arising from disruption of linear relationships. Computationally efficient methods are provided to identify historical, tail, and relational anomalies at the data-entry level (Sartore et al., 2024; <doi:10.6339/24-JDS1136>). A score statistic is developed for each anomaly type, using a distribution-free approach motivated by the Bienaymé-Chebyshev's inequality, and fuzzy logic is used to detect cellwise outliers resulting from different types of anomalies. Each data entry is individually scored and individual scores are combined into a final score to determine anomalous entries. In contrast to fuzzy logic, Bayesian bootstrap and a Bayesian test based on empirical likelihoods are also provided as studied by Sartore et al. (2024; <doi:10.3390/stats7040073>). These algorithms allow for a more nuanced approach to outlier detection, as it can identify outliers at data-entry level which are not obviously distinct from the rest of the data. --- This research was supported in part by the U.S. Department of Agriculture, National Agriculture Statistics Service. The findings and conclusions in this publication are those of the authors and should not be construed to represent any official USDA, or US Government determination or policy.

Maintained by Luca Sartore. Last updated 18 days ago.

openmp

12.5 match 2.00 score

wch

gcookbook:Data for "R Graphics Cookbook"

Data sets used in the book "R Graphics Cookbook" by Winston Chang, published by O'Reilly Media.

Maintained by Winston Chang. Last updated 6 years ago.

3.4 match 10 stars 6.77 score 1.3k scripts 1 dependents

vmoprojs

GeoModels:Procedures for Gaussian and Non Gaussian Geostatistical (Large) Data Analysis

Functions for Gaussian and Non Gaussian (bivariate) spatial and spatio-temporal data analysis are provided for a) (fast) simulation of random fields, b) inference for random fields using standard likelihood and a likelihood approximation method called weighted composite likelihood based on pairs and b) prediction using (local) best linear unbiased prediction. Weighted composite likelihood can be very efficient for estimating massive datasets. Both regression and spatial (temporal) dependence analysis can be jointly performed. Flexible covariance models for spatial and spatial-temporal data on Euclidean domains and spheres are provided. There are also many useful functions for plotting and performing diagnostic analysis. Different non Gaussian random fields can be considered in the analysis. Among them, random fields with marginal distributions such as Skew-Gaussian, Student-t, Tukey-h, Sin-Arcsin, Two-piece, Weibull, Gamma, Log-Gaussian, Binomial, Negative Binomial and Poisson. See the URL for the papers associated with this package, as for instance, Bevilacqua and Gaetan (2015) <doi:10.1007/s11222-014-9460-6>, Bevilacqua et al. (2016) <doi:10.1007/s13253-016-0256-3>, Vallejos et al. (2020) <doi:10.1007/978-3-030-56681-4>, Bevilacqua et. al (2020) <doi:10.1002/env.2632>, Bevilacqua et. al (2021) <doi:10.1111/sjos.12447>, Bevilacqua et al. (2022) <doi:10.1016/j.jmva.2022.104949>, Morales-Navarrete et al. (2023) <doi:10.1080/01621459.2022.2140053>, and a large class of examples and tutorials.

Maintained by Moreno Bevilacqua. Last updated 2 months ago.

fortranopenblasglibc

3.6 match 3 stars 4.17 score 83 scripts

zhaokg

Rbeast:Bayesian Change-Point Detection and Time Series Decomposition

Interpretation of time series data is affected by model choices. Different models can give different or even contradicting estimates of patterns, trends, and mechanisms for the same data--a limitation alleviated by the Bayesian estimator of abrupt change,seasonality, and trend (BEAST) of this package. BEAST seeks to improve time series decomposition by forgoing the "single-best-model" concept and embracing all competing models into the inference via a Bayesian model averaging scheme. It is a flexible tool to uncover abrupt changes (i.e., change-points), cyclic variations (e.g., seasonality), and nonlinear trends in time-series observations. BEAST not just tells when changes occur but also quantifies how likely the detected changes are true. It detects not just piecewise linear trends but also arbitrary nonlinear trends. BEAST is applicable to real-valued time series data of all kinds, be it for remote sensing, economics, climate sciences, ecology, and hydrology. Example applications include its use to identify regime shifts in ecological data, map forest disturbance and land degradation from satellite imagery, detect market trends in economic data, pinpoint anomaly and extreme events in climate data, and unravel system dynamics in biological data. Details on BEAST are reported in Zhao et al. (2019) <doi:10.1016/j.rse.2019.04.034>.

Maintained by Kaiguang Zhao. Last updated 6 months ago.

anomoly-detectionbayesian-time-seriesbreakpoint-detectionchangepoint-detectioninterrupted-time-seriesseasonality-analysisstructural-breakpointtechnical-analysistime-seriestime-series-decompositiontrendtrend-analysis

0.5 match 302 stars 7.63 score 89 scripts