Showing 126 of total 126 results (show query)

mojaveazure

ggseurat:ggplot2 Bindings for Seurat Objects

Provides methods to allow Seurat objects to be utilized directly in the ggplot2 ecosystem.

Maintained by Paul Hoffman. Last updated 3 months ago.

12.9 match 4 stars 3.30 score 2 scripts

cran

VAM:Variance-Adjusted Mahalanobis

Contains logic for cell-specific gene set scoring of single cell RNA sequencing data.

Maintained by H. Robert Frost. Last updated 1 years ago.

7.8 match 4.78 score 4 dependents

obenno

scSpotlight:A Single Cell Analysis Shiny App

A single cell analysis (viewer) app based on Seurat.

Maintained by Zhixia Xiao. Last updated 7 months ago.

seuratshiny-appssingle-cell

11.6 match 2 stars 2.78 score

igordot

scooter:Streamlined scRNA-Seq Analysis Pipeline

Streamlined scRNA-Seq analysis pipeline.

Maintained by Igor Dolgalev. Last updated 1 years ago.

12.8 match 4 stars 2.51 score 16 scripts

sistia01

DWLS:Gene Expression Deconvolution Using Dampened Weighted Least Squares

The rapid development of single-cell transcriptomic technologies has helped uncover the cellular heterogeneity within cell populations. However, bulk RNA-seq continues to be the main workhorse for quantifying gene expression levels due to technical simplicity and low cost. To most effectively extract information from bulk data given the new knowledge gained from single-cell methods, we have developed a novel algorithm to estimate the cell-type composition of bulk data from a single-cell RNA-seq-derived cell-type signature. Comparison with existing methods using various real RNA-seq data sets indicates that our new approach is more accurate and comprehensive than previous methods, especially for the estimation of rare cell types. More importantly,our method can detect cell-type composition changes in response to external perturbations, thereby providing a valuable, cost-effective method for dissecting the cell-type-specific effects of drug treatments or condition changes. As such, our method is applicable to a wide range of biological and clinical investigations. Dampened weighted least squares ('DWLS') is an estimation method for gene expression deconvolution, in which the cell-type composition of a bulk RNA-seq data set is computationally inferred. This method corrects common biases towards cell types that are characterized by highly expressed genes and/or are highly prevalent, to provide accurate detection across diverse cell types. See: <https://www.nature.com/articles/s41467-019-10802-z.pdf> for more information about the development of 'DWLS' and the methods behind our functions.

Maintained by Adriana Sistig. Last updated 3 years ago.

5.5 match 2 stars 3.62 score 42 scripts

dsokolo

scMappR:Single Cell Mapper

The single cell mapper (scMappR) R package contains a suite of bioinformatic tools that provide experimentally relevant cell-type specific information to a list of differentially expressed genes (DEG). The function "scMappR_and_pathway_analysis" reranks DEGs to generate cell-type specificity scores called cell-weighted fold-changes. Users input a list of DEGs, normalized counts, and a signature matrix into this function. scMappR then re-weights bulk DEGs by cell-type specific expression from the signature matrix, cell-type proportions from RNA-seq deconvolution and the ratio of cell-type proportions between the two conditions to account for changes in cell-type proportion. With cwFold-changes calculated, scMappR uses two approaches to utilize cwFold-changes to complete cell-type specific pathway analysis. The "process_dgTMatrix_lists" function in the scMappR package contains an automated scRNA-seq processing pipeline where users input scRNA-seq count data, which is made compatible for scMappR and other R packages that analyze scRNA-seq data. We further used this to store hundreds up regularly updating signature matrices. The functions "tissue_by_celltype_enrichment", "tissue_scMappR_internal", and "tissue_scMappR_custom" combine these consistently processed scRNAseq count data with gene-set enrichment tools to allow for cell-type marker enrichment of a generic gene list (e.g. GWAS hits). Reference: Sokolowski,D.J., Faykoo-Martinez,M., Erdman,L., Hou,H., Chan,C., Zhu,H., Holmes,M.M., Goldenberg,A. and Wilson,M.D. (2021) Single-cell mapper (scMappR): using scRNA-seq to infer cell-type specificities of differentially expressed genes. NAR Genomics and Bioinformatics. 3(1). Iqab011. <doi:10.1093/nargab/lqab011>.

Maintained by Dustin Sokolowski. Last updated 2 years ago.

3.0 match 4 stars 3.30 score 9 scripts

mojaveazure

pbmc3k:Raw and Processed Matrices of the PBMC 3k Dataset

What the package does (one paragraph).

Maintained by Paul Hoffman. Last updated 9 months ago.

7.0 match 1.00 score

bioc

GRaNIE:GRaNIE: Reconstruction cell type specific gene regulatory networks including enhancers using single-cell or bulk chromatin accessibility and RNA-seq data

Genetic variants associated with diseases often affect non-coding regions, thus likely having a regulatory role. To understand the effects of genetic variants in these regulatory regions, identifying genes that are modulated by specific regulatory elements (REs) is crucial. The effect of gene regulatory elements, such as enhancers, is often cell-type specific, likely because the combinations of transcription factors (TFs) that are regulating a given enhancer have cell-type specific activity. This TF activity can be quantified with existing tools such as diffTF and captures differences in binding of a TF in open chromatin regions. Collectively, this forms a gene regulatory network (GRN) with cell-type and data-specific TF-RE and RE-gene links. Here, we reconstruct such a GRN using single-cell or bulk RNAseq and open chromatin (e.g., using ATACseq or ChIPseq for open chromatin marks) and optionally (Capture) Hi-C data. Our network contains different types of links, connecting TFs to regulatory elements, the latter of which is connected to genes in the vicinity or within the same chromatin domain (TAD). We use a statistical framework to assign empirical FDRs and weights to all links using a permutation-based approach.

Maintained by Christian Arnold. Last updated 5 months ago.

softwaregeneexpressiongeneregulationnetworkinferencegenesetenrichmentbiomedicalinformaticsgeneticstranscriptomicsatacseqrnaseqgraphandnetworkregressiontranscriptionchipseq

1.3 match 5.40 score 24 scripts

carmonalab

scGate:Marker-Based Cell Type Purification for Single-Cell Sequencing Data

A common bioinformatics task in single-cell data analysis is to purify a cell type or cell population of interest from heterogeneous datasets. 'scGate' automatizes marker-based purification of specific cell populations, without requiring training data or reference gene expression profiles. Briefly, 'scGate' takes as input: i) a gene expression matrix stored in a 'Seurat' object and ii) a “gating model” (GM), consisting of a set of marker genes that define the cell population of interest. The GM can be as simple as a single marker gene, or a combination of positive and negative markers. More complex GMs can be constructed in a hierarchical fashion, akin to gating strategies employed in flow cytometry. 'scGate' evaluates the strength of signature marker expression in each cell using the rank-based method 'UCell', and then performs k-nearest neighbor (kNN) smoothing by calculating the mean 'UCell' score across neighboring cells. kNN-smoothing aims at compensating for the large degree of sparsity in scRNA-seq data. Finally, a universal threshold over kNN-smoothed signature scores is applied in binary decision trees generated from the user-provided gating model, to annotate cells as either “pure” or “impure”, with respect to the cell population of interest. See the related publication Andreatta et al. (2022) <doi:10.1093/bioinformatics/btac141>.

Maintained by Massimo Andreatta. Last updated 1 months ago.

filteringmarker-genesscgatesignaturessingle-cell

0.5 match 106 stars 8.38 score 163 scripts