Showing 200 of total 319 results (show query)

bioc

ROC:utilities for ROC, with microarray focus

Provide utilities for ROC, with microarray focus.

Maintained by Vince Carey. Last updated 5 months ago.

differentialexpression

71.0 match 6.97 score 70 scripts 8 dependents

dpc10ster

RJafroc:Artificial Intelligence Systems and Observer Performance

Analyzing the performance of artificial intelligence (AI) systems/algorithms characterized by a 'search-and-report' strategy. Historically observer performance has dealt with measuring radiologists' performances in search tasks, e.g., searching for lesions in medical images and reporting them, but the implicit location information has been ignored. The implemented methods apply to analyzing the absolute and relative performances of AI systems, comparing AI performance to a group of human readers or optimizing the reporting threshold of an AI system. In addition to performing historical receiver operating receiver operating characteristic (ROC) analysis (localization information ignored), the software also performs free-response receiver operating characteristic (FROC) analysis, where lesion localization information is used. A book using the software has been published: Chakraborty DP: Observer Performance Methods for Diagnostic Imaging - Foundations, Modeling, and Applications with R-Based Examples, Taylor-Francis LLC; 2017: <https://www.routledge.com/Observer-Performance-Methods-for-Diagnostic-Imaging-Foundations-Modeling/Chakraborty/p/book/9781482214840>. Online updates to this book, which use the software, are at <https://dpc10ster.github.io/RJafrocQuickStart/>, <https://dpc10ster.github.io/RJafrocRocBook/> and at <https://dpc10ster.github.io/RJafrocFrocBook/>. Supported data collection paradigms are the ROC, FROC and the location ROC (LROC). ROC data consists of single ratings per images, where a rating is the perceived confidence level that the image is that of a diseased patient. An ROC curve is a plot of true positive fraction vs. false positive fraction. FROC data consists of a variable number (zero or more) of mark-rating pairs per image, where a mark is the location of a reported suspicious region and the rating is the confidence level that it is a real lesion. LROC data consists of a rating and a location of the most suspicious region, for every image. Four models of observer performance, and curve-fitting software, are implemented: the binormal model (BM), the contaminated binormal model (CBM), the correlated contaminated binormal model (CORCBM), and the radiological search model (RSM). Unlike the binormal model, CBM, CORCBM and RSM predict 'proper' ROC curves that do not inappropriately cross the chance diagonal. Additionally, RSM parameters are related to search performance (not measured in conventional ROC analysis) and classification performance. Search performance refers to finding lesions, i.e., true positives, while simultaneously not finding false positive locations. Classification performance measures the ability to distinguish between true and false positive locations. Knowing these separate performances allows principled optimization of reader or AI system performance. This package supersedes Windows JAFROC (jackknife alternative FROC) software V4.2.1, <https://github.com/dpc10ster/WindowsJafroc>. Package functions are organized as follows. Data file related function names are preceded by 'Df', curve fitting functions by 'Fit', included data sets by 'dataset', plotting functions by 'Plot', significance testing functions by 'St', sample size related functions by 'Ss', data simulation functions by 'Simulate' and utility functions by 'Util'. Implemented are figures of merit (FOMs) for quantifying performance and functions for visualizing empirical or fitted operating characteristics: e.g., ROC, FROC, alternative FROC (AFROC) and weighted AFROC (wAFROC) curves. For fully crossed study designs significance testing of reader-averaged FOM differences between modalities is implemented via either Dorfman-Berbaum-Metz or the Obuchowski-Rockette methods. Also implemented is single modality analysis, which allows comparison of performance of a group of radiologists to a specified value, or comparison of AI to a group of radiologists interpreting the same cases. Crossed-modality analysis is implemented wherein there are two crossed modality factors and the aim is to determined performance in each modality factor averaged over all levels of the second factor. Sample size estimation tools are provided for ROC and FROC studies; these use estimates of the relevant variances from a pilot study to predict required numbers of readers and cases in a pivotal study to achieve the desired power. Utility and data file manipulation functions allow data to be read in any of the currently used input formats, including Excel, and the results of the analysis can be viewed in text or Excel output files. The methods are illustrated with several included datasets from the author's collaborations. This update includes improvements to the code, some as a result of user-reported bugs and new feature requests, and others discovered during ongoing testing and code simplification.

Maintained by Dev Chakraborty. Last updated 5 months ago.

ai-optimizationartificial-intelligence-algorithmscomputer-aided-diagnosisfroc-analysisroc-analysistarget-classificationtarget-localizationcpp

67.4 match 19 stars 5.69 score 65 scripts

riazakhan94

ROCit:Performance Assessment of Binary Classifier with Visualization

Sensitivity (or recall or true positive rate), false positive rate, specificity, precision (or positive predictive value), negative predictive value, misclassification rate, accuracy, F-score- these are popular metrics for assessing performance of binary classifier for certain threshold. These metrics are calculated at certain threshold values. Receiver operating characteristic (ROC) curve is a common tool for assessing overall diagnostic ability of the binary classifier. Unlike depending on a certain threshold, area under ROC curve (also known as AUC), is a summary statistic about how well a binary classifier performs overall for the classification task. ROCit package provides flexibility to easily evaluate threshold-bound metrics. Also, ROC curve, along with AUC, can be obtained using different methods, such as empirical, binormal and non-parametric. ROCit encompasses a wide variety of methods for constructing confidence interval of ROC curve and AUC. ROCit also features the option of constructing empirical gains table, which is a handy tool for direct marketing. The package offers options for commonly used visualization, such as, ROC curve, KS plot, lift plot. Along with in-built default graphics setting, there are rooms for manual tweak by providing the necessary values as function arguments. ROCit is a powerful tool offering a range of things, yet it is very easy to use.

Maintained by Md Riaz Ahmed Khan. Last updated 3 years ago.

16.6 match 7.66 score 332 scripts 6 dependents

spatstat

spatstat.model:Parametric Statistical Modelling and Inference for the 'spatstat' Family

Functionality for parametric statistical modelling and inference for spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Supports parametric modelling, formal statistical inference, and model validation. Parametric models include Poisson point processes, Cox point processes, Neyman-Scott cluster processes, Gibbs point processes and determinantal point processes. Models can be fitted to data using maximum likelihood, maximum pseudolikelihood, maximum composite likelihood and the method of minimum contrast. Fitted models can be simulated and predicted. Formal inference includes hypothesis tests (quadrat counting tests, Cressie-Read tests, Clark-Evans test, Berman test, Diggle-Cressie-Loosmore-Ford test, scan test, studentised permutation test, segregation test, ANOVA tests of fitted models, adjusted composite likelihood ratio test, envelope tests, Dao-Genton test, balanced independent two-stage test), confidence intervals for parameters, and prediction intervals for point counts. Model validation techniques include leverage, influence, partial residuals, added variable plots, diagnostic plots, pseudoscore residual plots, model compensators and Q-Q plots.

Maintained by Adrian Baddeley. Last updated 7 days ago.

analysis-of-variancecluster-processconfidence-intervalscox-processdeterminantal-point-processesgibbs-processinfluenceleveragemodel-diagnosticsneyman-scottparameter-estimationpoisson-processspatial-analysisspatial-modellingspatial-point-processesstatistical-inference

8.8 match 5 stars 9.09 score 6 scripts 46 dependents

spatstat

spatstat.linnet:Linear Networks Functionality of the 'spatstat' Family

Defines types of spatial data on a linear network and provides functionality for geometrical operations, data analysis and modelling of data on a linear network, in the 'spatstat' family of packages. Contains definitions and support for linear networks, including creation of networks, geometrical measurements, topological connectivity, geometrical operations such as inserting and deleting vertices, intersecting a network with another object, and interactive editing of networks. Data types defined on a network include point patterns, pixel images, functions, and tessellations. Exploratory methods include kernel estimation of intensity on a network, K-functions and pair correlation functions on a network, simulation envelopes, nearest neighbour distance and empty space distance, relative risk estimation with cross-validated bandwidth selection. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the function lppm() similar to glm(). Only Poisson models are implemented so far. Models may involve dependence on covariates and dependence on marks. Models are fitted by maximum likelihood. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots. Random point patterns on a network can be generated using a variety of models.

Maintained by Adrian Baddeley. Last updated 2 months ago.

density-estimationheat-equationkernel-density-estimationnetwork-analysispoint-processesspatial-data-analysisstatistical-analysisstatistical-inferencestatistical-models

6.3 match 6 stars 9.64 score 35 scripts 43 dependents

wraff

wrProteo:Proteomics Data Analysis Functions

Data analysis of proteomics experiments by mass spectrometry is supported by this collection of functions mostly dedicated to the analysis of (bottom-up) quantitative (XIC) data. Fasta-formatted proteomes (eg from UniProt Consortium <doi:10.1093/nar/gky1049>) can be read with automatic parsing and multiple annotation types (like species origin, abbreviated gene names, etc) extracted. Initial results from multiple software for protein (and peptide) quantitation can be imported (to a common format): MaxQuant (Tyanova et al 2016 <doi:10.1038/nprot.2016.136>), Dia-NN (Demichev et al 2020 <doi:10.1038/s41592-019-0638-x>), Fragpipe (da Veiga et al 2020 <doi:10.1038/s41592-020-0912-y>), ionbot (Degroeve et al 2021 <doi:10.1101/2021.07.02.450686>), MassChroq (Valot et al 2011 <doi:10.1002/pmic.201100120>), OpenMS (Strauss et al 2021 <doi:10.1038/nmeth.3959>), ProteomeDiscoverer (Orsburn 2021 <doi:10.3390/proteomes9010015>), Proline (Bouyssie et al 2020 <doi:10.1093/bioinformatics/btaa118>), AlphaPept (preprint Strauss et al <doi:10.1101/2021.07.23.453379>) and Wombat-P (Bouyssie et al 2023 <doi:10.1021/acs.jproteome.3c00636>. Meta-data provided by initial analysis software and/or in sdrf format can be integrated to the analysis. Quantitative proteomics measurements frequently contain multiple NA values, due to physical absence of given peptides in some samples, limitations in sensitivity or other reasons. Help is provided to inspect the data graphically to investigate the nature of NA-values via their respective replicate measurements and to help/confirm the choice of NA-replacement algorithms. Meta-data in sdrf-format (Perez-Riverol et al 2020 <doi:10.1021/acs.jproteome.0c00376>) or similar tabular formats can be imported and included. Missing values can be inspected and imputed based on the concept of NA-neighbours or other methods. Dedicated filtering and statistical testing using the framework of package 'limma' <doi:10.18129/B9.bioc.limma> can be run, enhanced by multiple rounds of NA-replacements to provide robustness towards rare stochastic events. Multi-species samples, as frequently used in benchmark-tests (eg Navarro et al 2016 <doi:10.1038/nbt.3685>, Ramus et al 2016 <doi:10.1016/j.jprot.2015.11.011>), can be run with special options considering such sub-groups during normalization and testing. Subsequently, ROC curves (Hand and Till 2001 <doi:10.1023/A:1010920819831>) can be constructed to compare multiple analysis approaches. As detailed example the data-set from Ramus et al 2016 <doi:10.1016/j.jprot.2015.11.011>) quantified by MaxQuant, ProteomeDiscoverer, and Proline is provided with a detailed analysis of heterologous spike-in proteins.

Maintained by Wolfgang Raffelsberger. Last updated 4 months ago.

14.4 match 3.67 score 17 scripts 1 dependents

mthrun

DataVisualizations:Visualizations of High-Dimensional Data

Gives access to data visualisation methods that are relevant from the data scientist's point of view. The flagship idea of 'DataVisualizations' is the mirrored density plot (MD-plot) for either classified or non-classified multivariate data published in Thrun, M.C. et al.: "Analyzing the Fine Structure of Distributions" (2020), PLoS ONE, <DOI:10.1371/journal.pone.0238835>. The MD-plot outperforms the box-and-whisker diagram (box plot), violin plot and bean plot and geom_violin plot of ggplot2. Furthermore, a collection of various visualization methods for univariate data is provided. In the case of exploratory data analysis, 'DataVisualizations' makes it possible to inspect the distribution of each feature of a dataset visually through a combination of four methods. One of these methods is the Pareto density estimation (PDE) of the probability density function (pdf). Additionally, visualizations of the distribution of distances using PDE, the scatter-density plot using PDE for two variables as well as the Shepard density plot and the Bland-Altman plot are presented here. Pertaining to classified high-dimensional data, a number of visualizations are described, such as f.ex. the heat map and silhouette plot. A political map of the world or Germany can be visualized with the additional information defined by a classification of countries or regions. By extending the political map further, an uncomplicated function for a Choropleth map can be used which is useful for measurements across a geographic area. For categorical features, the Pie charts, slope charts and fan plots, improved by the ABC analysis, become usable. More detailed explanations are found in the book by Thrun, M.C.: "Projection-Based Clustering through Self-Organization and Swarm Intelligence" (2018) <DOI:10.1007/978-3-658-20540-9>.

Maintained by Michael Thrun. Last updated 2 months ago.

cpp

5.6 match 7 stars 7.72 score 118 scripts 7 dependents

haghish

adjROC:Computing Sensitivity at a Fix Value of Specificity and Vice Versa as Well as Bootstrap Metrics for ROC Curves

This software assesses the receiver operating characteristic (ROC) curve at adjusted thresholds, enabling the comparison of sensitivity and specificity across multiple binary classification models. Instead of comparing different models with varied cutoff values in their risk thresholds, all models can be compared at a fixed threshold of sensitivity, a fixed threshold of specificity, or the crossing point between sensitivity and specificity. If a threshold for specificity is given (e.g., specificity = 0.9), sensitivity and its confidence interval are computed, and vice versa. If the threshold for either sensitivity or specificity is not provided, the crossing point between the sensitivity and specificity curves is returned, along with their confidence intervals. For bootstrap procedures, the software evaluates the mean and CI bootstrap values for sensitivity, specificity, and the crossing point between specificity and sensitivity. This allows users to discern whether the performance of a model (based on adjusted sensitivity or adjusted specificity) is significantly different from other models. This software addresses the issue of comparing different classification models with varying predefined cutoff thresholds, which often leads to inconclusive results due to the fluctuating values of both sensitivity and specificity.

Maintained by E. F. Haghish. Last updated 9 months ago.

12.2 match 3.00 score

izmirlig

pwrFDR:FDR Power

Computing Average and TPX Power under various BHFDR type sequential procedures. All of these procedures involve control of some summary of the distribution of the FDP, e.g. the proportion of discoveries which are false in a given experiment. The most widely known of these, the BH-FDR procedure, controls the FDR which is the mean of the FDP. A lesser known procedure, due to Lehmann and Romano, controls the FDX, or probability that the FDP exceeds a user provided threshold. This is less conservative than FWE control procedures but much more conservative than the BH-FDR proceudre. This package and the references supporting it introduce a new procedure for controlling the FDX which we call the BH-FDX procedure. This procedure iteratively identifies, given alpha and lower threshold delta, an alpha* less than alpha at which BH-FDR guarantees FDX control. This uses asymptotic approximation and is only slightly more conservative than the BH-FDR procedure. Likewise, we can think of the power in multiple testing experiments in terms of a summary of the distribution of the True Positive Proportion (TPP), the portion of tests truly non-null distributed that are called significant. The package will compute power, sample size or any other missing parameter required for power defined as (i) the mean of the TPP (average power) or (ii) the probability that the TPP exceeds a given value, lambda, (TPX power) via asymptotic approximation. All supplied theoretical results are also obtainable via simulation. The suggested approach is to narrow in on a design via the theoretical approaches and then make final adjustments/verify the results by simulation. The theoretical results are described in Izmirlian, G (2020) Statistics and Probability letters, "<doi:10.1016/j.spl.2020.108713>", and an applied paper describing the methodology with a simulation study is in preparation. See citation("pwrFDR").

Maintained by Grant Izmirlian. Last updated 2 months ago.

9.3 match 2.58 score 19 scripts

fvafrcu

HandTill2001:Multiple Class Area under ROC Curve

An S4 implementation of Eq. (3) and Eq. (7) by David J. Hand and Robert J. Till (2001) <DOI:10.1023/A:1010920819831>.

Maintained by Andreas Dominik Cullmann. Last updated 4 years ago.

4.8 match 4.95 score 59 scripts 1 dependents

bioc

mixOmics:Omics Data Integration Project

Multivariate methods are well suited to large omics data sets where the number of variables (e.g. genes, proteins, metabolites) is much larger than the number of samples (patients, cells, mice). They have the appealing properties of reducing the dimension of the data by using instrumental variables (components), which are defined as combinations of all variables. Those components are then used to produce useful graphical outputs that enable better understanding of the relationships and correlation structures between the different data sets that are integrated. mixOmics offers a wide range of multivariate methods for the exploration and integration of biological datasets with a particular focus on variable selection. The package proposes several sparse multivariate models we have developed to identify the key variables that are highly correlated, and/or explain the biological outcome of interest. The data that can be analysed with mixOmics may come from high throughput sequencing technologies, such as omics data (transcriptomics, metabolomics, proteomics, metagenomics etc) but also beyond the realm of omics (e.g. spectral imaging). The methods implemented in mixOmics can also handle missing values without having to delete entire rows with missing data. A non exhaustive list of methods include variants of generalised Canonical Correlation Analysis, sparse Partial Least Squares and sparse Discriminant Analysis. Recently we implemented integrative methods to combine multiple data sets: N-integration with variants of Generalised Canonical Correlation Analysis and P-integration with variants of multi-group Partial Least Squares.

Maintained by Eva Hamrud. Last updated 4 days ago.

immunooncologymicroarraysequencingmetabolomicsmetagenomicsproteomicsgenepredictionmultiplecomparisonclassificationregressionbioconductorgenomicsgenomics-datagenomics-visualizationmultivariate-analysismultivariate-statisticsomicsr-pkgr-project

1.7 match 182 stars 13.71 score 1.3k scripts 22 dependents

bioc

genefilter:genefilter: methods for filtering genes from high-throughput experiments

Some basic functions for filtering genes.

Maintained by Bioconductor Package Maintainer. Last updated 5 months ago.

microarrayfortrancpp

1.9 match 11.10 score 2.4k scripts 142 dependents

anabraga

Comp2ROC:Compare Two ROC Curves that Intersect

Comparison of two ROC curves through the methodology proposed by Ana C. Braga.

Maintained by Ana C. Braga. Last updated 9 years ago.

19.6 match 1.00 score 9 scripts

mwheymans

psfmi:Prediction Model Pooling, Selection and Performance Evaluation Across Multiply Imputed Datasets

Pooling, backward and forward selection of linear, logistic and Cox regression models in multiply imputed datasets. Backward and forward selection can be done from the pooled model using Rubin's Rules (RR), the D1, D2, D3, D4 and the median p-values method. This is also possible for Mixed models. The models can contain continuous, dichotomous, categorical and restricted cubic spline predictors and interaction terms between all these type of predictors. The stability of the models can be evaluated using (cluster) bootstrapping. The package further contains functions to pool model performance measures as ROC/AUC, Reclassification, R-squared, scaled Brier score, H&L test and calibration plots for logistic regression models. Internal validation can be done across multiply imputed datasets with cross-validation or bootstrapping. The adjusted intercept after shrinkage of pooled regression coefficients can be obtained. Backward and forward selection as part of internal validation is possible. A function to externally validate logistic prediction models in multiple imputed datasets is available and a function to compare models. For Cox models a strata variable can be included. Eekhout (2017) <doi:10.1186/s12874-017-0404-7>. Wiel (2009) <doi:10.1093/biostatistics/kxp011>. Marshall (2009) <doi:10.1186/1471-2288-9-57>.

Maintained by Martijn Heymans. Last updated 2 years ago.

cox-regressionimputationimputed-datasetslogisticmultiple-imputationpoolpredictorregressionselectionsplinespline-predictors

2.1 match 10 stars 7.17 score 70 scripts

bioc

PDATK:Pancreatic Ductal Adenocarcinoma Tool-Kit

Pancreatic ductal adenocarcinoma (PDA) has a relatively poor prognosis and is one of the most lethal cancers. Molecular classification of gene expression profiles holds the potential to identify meaningful subtypes which can inform therapeutic strategy in the clinical setting. The Pancreatic Cancer Adenocarcinoma Tool-Kit (PDATK) provides an S4 class-based interface for performing unsupervised subtype discovery, cross-cohort meta-clustering, gene-expression-based classification, and subsequent survival analysis to identify prognostically useful subtypes in pancreatic cancer and beyond. Two novel methods, Consensus Subtypes in Pancreatic Cancer (CSPC) and Pancreatic Cancer Overall Survival Predictor (PCOSP) are included for consensus-based meta-clustering and overall-survival prediction, respectively. Additionally, four published subtype classifiers and three published prognostic gene signatures are included to allow users to easily recreate published results, apply existing classifiers to new data, and benchmark the relative performance of new methods. The use of existing Bioconductor classes as input to all PDATK classes and methods enables integration with existing Bioconductor datasets, including the 21 pancreatic cancer patient cohorts available in the MetaGxPancreas data package. PDATK has been used to replicate results from Sandhu et al (2019) [https://doi.org/10.1200/cci.18.00102] and an additional paper is in the works using CSPC to validate subtypes from the included published classifiers, both of which use the data available in MetaGxPancreas. The inclusion of subtype centroids and prognostic gene signatures from these and other publications will enable researchers and clinicians to classify novel patient gene expression data, allowing the direct clinical application of the classifiers included in PDATK. Overall, PDATK provides a rich set of tools to identify and validate useful prognostic and molecular subtypes based on gene-expression data, benchmark new classifiers against existing ones, and apply discovered classifiers on novel patient data to inform clinical decision making.

Maintained by Benjamin Haibe-Kains. Last updated 5 months ago.

geneexpressionpharmacogeneticspharmacogenomicssoftwareclassificationsurvivalclusteringgeneprediction

3.5 match 1 stars 4.31 score 17 scripts

yangfengstat

nproc:Neyman-Pearson (NP) Classification Algorithms and NP Receiver Operating Characteristic (NP-ROC) Curves

In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face the need to limit type I error (i.e., the conditional probability of misclassifying a class 0 observation as class 1) so that it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a natural choice; it minimizes type II error (i.e., the conditional probability of misclassifying a class 1 observation as class 0) while enforcing an upper bound, alpha, on the type I error. Although the NP paradigm has a century-long history in hypothesis testing, it has not been well recognized and implemented in classification schemes. Common practices that directly limit the empirical type I error to no more than alpha do not satisfy the type I error control objective because the resulting classifiers are still likely to have type I errors much larger than alpha. As a result, the NP paradigm has not been properly implemented for many classification scenarios in practice. In this work, we develop the first umbrella algorithm that implements the NP paradigm for all scoring-type classification methods, including popular methods such as logistic regression, support vector machines and random forests. Powered by this umbrella algorithm, we propose a novel graphical tool for NP classification methods: NP receiver operating characteristic (NP-ROC) bands, motivated by the popular receiver operating characteristic (ROC) curves. NP-ROC bands will help choose in a data adaptive way and compare different NP classifiers.

Maintained by Yang Feng. Last updated 5 years ago.

6.4 match 2.23 score 17 scripts

bioc

kebabs:Kernel-Based Analysis of Biological Sequences

The package provides functionality for kernel-based analysis of DNA, RNA, and amino acid sequences via SVM-based methods. As core functionality, kebabs implements following sequence kernels: spectrum kernel, mismatch kernel, gappy pair kernel, and motif kernel. Apart from an efficient implementation of standard position-independent functionality, the kernels are extended in a novel way to take the position of patterns into account for the similarity measure. Because of the flexibility of the kernel formulation, other kernels like the weighted degree kernel or the shifted weighted degree kernel with constant weighting of positions are included as special cases. An annotation-specific variant of the kernels uses annotation information placed along the sequence together with the patterns in the sequence. The package allows for the generation of a kernel matrix or an explicit feature representation in dense or sparse format for all available kernels which can be used with methods implemented in other R packages. With focus on SVM-based methods, kebabs provides a framework which simplifies the usage of existing SVM implementations in kernlab, e1071, and LiblineaR. Binary and multi-class classification as well as regression tasks can be used in a unified way without having to deal with the different functions, parameters, and formats of the selected SVM. As support for choosing hyperparameters, the package provides cross validation - including grouped cross validation, grid search and model selection functions. For easier biological interpretation of the results, the package computes feature weights for all SVMs and prediction profiles which show the contribution of individual sequence positions to the prediction result and indicate the relevance of sequence sections for the learning result and the underlying biological functions.

Maintained by Ulrich Bodenhofer. Last updated 5 months ago.

supportvectormachineclassificationclusteringregressioncpp

2.0 match 6.58 score 47 scripts 3 dependents

mjuraska

CoRpower:Power Calculations for Assessing Correlates of Risk in Clinical Efficacy Trials

Calculates power for assessment of intermediate biomarker responses as correlates of risk in the active treatment group in clinical efficacy trials, as described in Gilbert, Janes, and Huang, Power/Sample Size Calculations for Assessing Correlates of Risk in Clinical Efficacy Trials (2016, Statistics in Medicine). The methods differ from past approaches by accounting for the level of clinical treatment efficacy overall and in biomarker response subgroups, which enables the correlates of risk results to be interpreted in terms of potential correlates of efficacy/protection. The methods also account for inter-individual variability of the observed biomarker response that is not biologically relevant (e.g., due to technical measurement error of the laboratory assay used to measure the biomarker response), which is important because power to detect a specified correlate of risk effect size is heavily affected by the biomarker's measurement error. The methods can be used for a general binary clinical endpoint model with a univariate dichotomous, trichotomous, or continuous biomarker response measured in active treatment recipients at a fixed timepoint after randomization, with either case-cohort Bernoulli sampling or case-control without-replacement sampling of the biomarker (a baseline biomarker is handled as a trivial special case). In a specified two-group trial design, the computeN() function can initially be used for calculating additional requisite design parameters pertaining to the target population of active treatment recipients observed to be at risk at the biomarker sampling timepoint. Subsequently, the power calculation employs an inverse probability weighted logistic regression model fitted by the tps() function in the 'osDesign' package. Power results as well as the relationship between the correlate of risk effect size and treatment efficacy can be visualized using various plotting functions. To link power calculations for detecting a correlate of risk and a correlate of treatment efficacy, a baseline immunogenicity predictor (BIP) can be simulated according to a specified classification rule (for dichotomous or trichotomous BIPs) or correlation with the biomarker response (for continuous BIPs), then outputted along with biomarker response data under assignment to treatment, and clinical endpoint data for both treatment and placebo groups.

Maintained by Michal Juraska. Last updated 4 years ago.

3.0 match 4.15 score 14 scripts

bioc

omicsViewer:Interactive and explorative visualization of SummarizedExperssionSet or ExpressionSet using omicsViewer

omicsViewer visualizes ExpressionSet (or SummarizedExperiment) in an interactive way. The omicsViewer has a separate back- and front-end. In the back-end, users need to prepare an ExpressionSet that contains all the necessary information for the downstream data interpretation. Some extra requirements on the headers of phenotype data or feature data are imposed so that the provided information can be clearly recognized by the front-end, at the same time, keep a minimum modification on the existing ExpressionSet object. The pure dependency on R/Bioconductor guarantees maximum flexibility in the statistical analysis in the back-end. Once the ExpressionSet is prepared, it can be visualized using the front-end, implemented by shiny and plotly. Both features and samples could be selected from (data) tables or graphs (scatter plot/heatmap). Different types of analyses, such as enrichment analysis (using Bioconductor package fgsea or fisher's exact test) and STRING network analysis, will be performed on the fly and the results are visualized simultaneously. When a subset of samples and a phenotype variable is selected, a significance test on means (t-test or ranked based test; when phenotype variable is quantitative) or test of independence (chi-square or fisher’s exact test; when phenotype data is categorical) will be performed to test the association between the phenotype of interest with the selected samples. Additionally, other analyses can be easily added as extra shiny modules. Therefore, omicsViewer will greatly facilitate data exploration, many different hypotheses can be explored in a short time without the need for knowledge of R. In addition, the resulting data could be easily shared using a shiny server. Otherwise, a standalone version of omicsViewer together with designated omics data could be easily created by integrating it with portable R, which can be shared with collaborators or submitted as supplementary data together with a manuscript.

Maintained by Chen Meng. Last updated 2 months ago.

softwarevisualizationgenesetenrichmentdifferentialexpressionmotifdiscoverynetworknetworkenrichment

1.9 match 4 stars 6.02 score 22 scripts

mdbrown

rmda:Risk Model Decision Analysis

Provides tools to evaluate the value of using a risk prediction instrument to decide treatment or intervention (versus no treatment or intervention). Given one or more risk prediction instruments (risk models) that estimate the probability of a binary outcome, rmda provides functions to estimate and display decision curves and other figures that help assess the population impact of using a risk model for clinical decision making. Here, "population" refers to the relevant patient population. Decision curves display estimates of the (standardized) net benefit over a range of probability thresholds used to categorize observations as 'high risk'. The curves help evaluate a treatment policy that recommends treatment for patients who are estimated to be 'high risk' by comparing the population impact of a risk-based policy to "treat all" and "treat none" intervention policies. Curves can be estimated using data from a prospective cohort. In addition, rmda can estimate decision curves using data from a case-control study if an estimate of the population outcome prevalence is available. Version 1.4 of the package provides an alternative framing of the decision problem for situations where treatment is the standard-of-care and a risk model might be used to recommend that low-risk patients (i.e., patients below some risk threshold) opt out of treatment. Confidence intervals calculated using the bootstrap can be computed and displayed. A wrapper function to calculate cross-validated curves using k-fold cross-validation is also provided.

Maintained by Marshall Brown. Last updated 6 years ago.

1.7 match 28 stars 6.56 score 96 scripts