Showing 200 of total 2213 results (show query)

cran

nlme:Linear and Nonlinear Mixed Effects Models

Fit and compare Gaussian linear and nonlinear mixed-effects models.

Maintained by R Core Team. Last updated 2 months ago.

fortran

18.6 match 6 stars 13.00 score 13k scripts 8.7k dependents

dnychka

fields:Tools for Spatial Data

For curve, surface and function fitting with an emphasis on splines, spatial data, geostatistics, and spatial statistics. The major methods include cubic, and thin plate splines, Kriging, and compactly supported covariance functions for large data sets. The splines and Kriging methods are supported by functions that can determine the smoothing parameter (nugget and sill variance) and other covariance function parameters by cross validation and also by restricted maximum likelihood. For Kriging there is an easy to use function that also estimates the correlation scale (range parameter). A major feature is that any covariance function implemented in R and following a simple format can be used for spatial prediction. There are also many useful functions for plotting and working with spatial data as images. This package also contains an implementation of sparse matrix methods for large spatial data sets and currently requires the sparse matrix (spam) package. Use help(fields) to get started and for an overview. The fields source code is deliberately commented and provides useful explanations of numerical details as a companion to the manual pages. The commented source code can be viewed by expanding the source code version and looking in the R subdirectory. The reference for fields can be generated by the citation function in R and has DOI <doi:10.5065/D6W957CT>. Development of this package was supported in part by the National Science Foundation Grant 1417857, the National Center for Atmospheric Research, and Colorado School of Mines. See the Fields URL for a vignette on using this package and some background on spatial statistics.

Maintained by Douglas Nychka. Last updated 9 months ago.

fortran

18.4 match 15 stars 12.60 score 7.7k scripts 295 dependents

braverock

PortfolioAnalytics:Portfolio Analysis, Including Numerical Methods for Optimization of Portfolios

Portfolio optimization and analysis routines and graphics.

Maintained by Brian G. Peterson. Last updated 3 months ago.

17.4 match 81 stars 11.49 score 626 scripts 2 dependents

spatstat

spatstat.model:Parametric Statistical Modelling and Inference for the 'spatstat' Family

Functionality for parametric statistical modelling and inference for spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Supports parametric modelling, formal statistical inference, and model validation. Parametric models include Poisson point processes, Cox point processes, Neyman-Scott cluster processes, Gibbs point processes and determinantal point processes. Models can be fitted to data using maximum likelihood, maximum pseudolikelihood, maximum composite likelihood and the method of minimum contrast. Fitted models can be simulated and predicted. Formal inference includes hypothesis tests (quadrat counting tests, Cressie-Read tests, Clark-Evans test, Berman test, Diggle-Cressie-Loosmore-Ford test, scan test, studentised permutation test, segregation test, ANOVA tests of fitted models, adjusted composite likelihood ratio test, envelope tests, Dao-Genton test, balanced independent two-stage test), confidence intervals for parameters, and prediction intervals for point counts. Model validation techniques include leverage, influence, partial residuals, added variable plots, diagnostic plots, pseudoscore residual plots, model compensators and Q-Q plots.

Maintained by Adrian Baddeley. Last updated 8 days ago.

analysis-of-variancecluster-processconfidence-intervalscox-processdeterminantal-point-processesgibbs-processinfluenceleveragemodel-diagnosticsneyman-scottparameter-estimationpoisson-processspatial-analysisspatial-modellingspatial-point-processesstatistical-inference

18.2 match 5 stars 9.09 score 6 scripts 46 dependents

functionaldata

fdapace:Functional Data Analysis and Empirical Dynamics

A versatile package that provides implementation of various methods of Functional Data Analysis (FDA) and Empirical Dynamics. The core of this package is Functional Principal Component Analysis (FPCA), a key technique for functional data analysis, for sparsely or densely sampled random trajectories and time courses, via the Principal Analysis by Conditional Estimation (PACE) algorithm. This core algorithm yields covariance and mean functions, eigenfunctions and principal component (scores), for both functional data and derivatives, for both dense (functional) and sparse (longitudinal) sampling designs. For sparse designs, it provides fitted continuous trajectories with confidence bands, even for subjects with very few longitudinal observations. PACE is a viable and flexible alternative to random effects modeling of longitudinal data. There is also a Matlab version (PACE) that contains some methods not available on fdapace and vice versa. Updates to fdapace were supported by grants from NIH Echo and NSF DMS-1712864 and DMS-2014626. Please cite our package if you use it (You may run the command citation("fdapace") to get the citation format and bibtex entry). References: Wang, J.L., Chiou, J., Mรผller, H.G. (2016) <doi:10.1146/annurev-statistics-041715-033624>; Chen, K., Zhang, X., Petersen, A., Mรผller, H.G. (2017) <doi:10.1007/s12561-015-9137-5>.

Maintained by Yidong Zhou. Last updated 9 months ago.

cpp

11.3 match 31 stars 11.46 score 474 scripts 25 dependents

bachmannpatrick

CLVTools:Tools for Customer Lifetime Value Estimation

A set of state-of-the-art probabilistic modeling approaches to derive estimates of individual customer lifetime values (CLV). Commonly, probabilistic approaches focus on modelling 3 processes, i.e. individuals' attrition, transaction, and spending process. Latent customer attrition models, which are also known as "buy-'til-you-die models", model the attrition as well as the transaction process. They are used to make inferences and predictions about transactional patterns of individual customers such as their future purchase behavior. Moreover, these models have also been used to predict individualsโ€™ long-term engagement in activities such as playing an online game or posting to a social media platform. The spending process is usually modelled by a separate probabilistic model. Combining these results yields in lifetime values estimates for individual customers. This package includes fast and accurate implementations of various probabilistic models for non-contractual settings (e.g., grocery purchases or hotel visits). All implementations support time-invariant covariates, which can be used to control for e.g., socio-demographics. If such an extension has been proposed in literature, we further provide the possibility to control for time-varying covariates to control for e.g., seasonal patterns. Currently, the package includes the following latent attrition models to model individuals' attrition and transaction process: [1] Pareto/NBD model (Pareto/Negative-Binomial-Distribution), [2] the Extended Pareto/NBD model (Pareto/Negative-Binomial-Distribution with time-varying covariates), [3] the BG/NBD model (Beta-Gamma/Negative-Binomial-Distribution) and the [4] GGom/NBD (Gamma-Gompertz/Negative-Binomial-Distribution). Further, we provide an implementation of the Gamma/Gamma model to model the spending process of individuals.

Maintained by Patrick Bachmann. Last updated 3 months ago.

clvcustomer-lifetime-valuecustomer-relationship-managementopenblasgslcppopenmp

19.8 match 55 stars 6.47 score 12 scripts

roustant

DiceKriging:Kriging Methods for Computer Experiments

Estimation, validation and prediction of kriging models. Important functions : km, print.km, plot.km, predict.km.

Maintained by Olivier Roustant. Last updated 4 years ago.

9.8 match 4 stars 6.99 score 526 scripts 37 dependents

vmoprojs

GeoModels:Procedures for Gaussian and Non Gaussian Geostatistical (Large) Data Analysis

Functions for Gaussian and Non Gaussian (bivariate) spatial and spatio-temporal data analysis are provided for a) (fast) simulation of random fields, b) inference for random fields using standard likelihood and a likelihood approximation method called weighted composite likelihood based on pairs and b) prediction using (local) best linear unbiased prediction. Weighted composite likelihood can be very efficient for estimating massive datasets. Both regression and spatial (temporal) dependence analysis can be jointly performed. Flexible covariance models for spatial and spatial-temporal data on Euclidean domains and spheres are provided. There are also many useful functions for plotting and performing diagnostic analysis. Different non Gaussian random fields can be considered in the analysis. Among them, random fields with marginal distributions such as Skew-Gaussian, Student-t, Tukey-h, Sin-Arcsin, Two-piece, Weibull, Gamma, Log-Gaussian, Binomial, Negative Binomial and Poisson. See the URL for the papers associated with this package, as for instance, Bevilacqua and Gaetan (2015) <doi:10.1007/s11222-014-9460-6>, Bevilacqua et al. (2016) <doi:10.1007/s13253-016-0256-3>, Vallejos et al. (2020) <doi:10.1007/978-3-030-56681-4>, Bevilacqua et. al (2020) <doi:10.1002/env.2632>, Bevilacqua et. al (2021) <doi:10.1111/sjos.12447>, Bevilacqua et al. (2022) <doi:10.1016/j.jmva.2022.104949>, Morales-Navarrete et al. (2023) <doi:10.1080/01621459.2022.2140053>, and a large class of examples and tutorials.

Maintained by Moreno Bevilacqua. Last updated 2 months ago.

fortranopenblasglibc

16.3 match 3 stars 4.17 score 83 scripts

r-cas

Ryacas:R Interface to the 'Yacas' Computer Algebra System

Interface to the 'yacas' computer algebra system (<http://www.yacas.org/>).

Maintained by Mikkel Meyer Andersen. Last updated 2 years ago.

cpp

5.7 match 40 stars 10.15 score 167 scripts 14 dependents

r-forge

distrMod:Object Oriented Implementation of Probability Models

Implements S4 classes for probability models based on packages 'distr' and 'distrEx'.

Maintained by Peter Ruckdeschel. Last updated 2 months ago.

8.1 match 6.71 score 139 scripts 6 dependents

venelin

PCMBase:Simulation and Likelihood Calculation of Phylogenetic Comparative Models

Phylogenetic comparative methods represent models of continuous trait data associated with the tips of a phylogenetic tree. Examples of such models are Gaussian continuous time branching stochastic processes such as Brownian motion (BM) and Ornstein-Uhlenbeck (OU) processes, which regard the data at the tips of the tree as an observed (final) state of a Markov process starting from an initial state at the root and evolving along the branches of the tree. The PCMBase R package provides a general framework for manipulating such models. This framework consists of an application programming interface for specifying data and model parameters, and efficient algorithms for simulating trait evolution under a model and calculating the likelihood of model parameters for an assumed model and trait data. The package implements a growing collection of models, which currently includes BM, OU, BM/OU with jumps, two-speed OU as well as mixed Gaussian models, in which different types of the above models can be associated with different branches of the tree. The PCMBase package is limited to trait-simulation and likelihood calculation of (mixed) Gaussian phylogenetic models. The PCMFit package provides functionality for inference of these models to tree and trait data. The package web-site <https://venelin.github.io/PCMBase/> provides access to the documentation and other resources.

Maintained by Venelin Mitov. Last updated 10 months ago.

6.9 match 6 stars 7.56 score 85 scripts 3 dependents

yuimaproject

yuima:The YUIMA Project Package for SDEs

Simulation and Inference for SDEs and Other Stochastic Processes.

Maintained by Stefano M. Iacus. Last updated 3 days ago.

openblascpp

7.1 match 9 stars 7.26 score 92 scripts 2 dependents