Showing 200 of total 610 results (show query)

neurodata

lolR:Linear Optimal Low-Rank Projection

Supervised learning techniques designed for the situation when the dimensionality exceeds the sample size have a tendency to overfit as the dimensionality of the data increases. To remedy this High dimensionality; low sample size (HDLSS) situation, we attempt to learn a lower-dimensional representation of the data before learning a classifier. That is, we project the data to a situation where the dimensionality is more manageable, and then are able to better apply standard classification or clustering techniques since we will have fewer dimensions to overfit. A number of previous works have focused on how to strategically reduce dimensionality in the unsupervised case, yet in the supervised HDLSS regime, few works have attempted to devise dimensionality reduction techniques that leverage the labels associated with the data. In this package and the associated manuscript Vogelstein et al. (2017) <arXiv:1709.01233>, we provide several methods for feature extraction, some utilizing labels and some not, along with easily extensible utilities to simplify cross-validative efforts to identify the best feature extraction method. Additionally, we include a series of adaptable benchmark simulations to serve as a standard for future investigative efforts into supervised HDLSS. Finally, we produce a comprehensive comparison of the included algorithms across a range of benchmark simulations and real data applications.

Maintained by Eric Bridgeford. Last updated 4 years ago.

26.6 match 20 stars 7.28 score 80 scripts

riazakhan94

ROCit:Performance Assessment of Binary Classifier with Visualization

Sensitivity (or recall or true positive rate), false positive rate, specificity, precision (or positive predictive value), negative predictive value, misclassification rate, accuracy, F-score- these are popular metrics for assessing performance of binary classifier for certain threshold. These metrics are calculated at certain threshold values. Receiver operating characteristic (ROC) curve is a common tool for assessing overall diagnostic ability of the binary classifier. Unlike depending on a certain threshold, area under ROC curve (also known as AUC), is a summary statistic about how well a binary classifier performs overall for the classification task. ROCit package provides flexibility to easily evaluate threshold-bound metrics. Also, ROC curve, along with AUC, can be obtained using different methods, such as empirical, binormal and non-parametric. ROCit encompasses a wide variety of methods for constructing confidence interval of ROC curve and AUC. ROCit also features the option of constructing empirical gains table, which is a handy tool for direct marketing. The package offers options for commonly used visualization, such as, ROC curve, KS plot, lift plot. Along with in-built default graphics setting, there are rooms for manual tweak by providing the necessary values as function arguments. ROCit is a powerful tool offering a range of things, yet it is very easy to use.

Maintained by Md Riaz Ahmed Khan. Last updated 3 years ago.

23.8 match 7.66 score 332 scripts 6 dependents

bnaras

pamr:Pam: Prediction Analysis for Microarrays

Some functions for sample classification in microarrays.

Maintained by Balasubramanian Narasimhan. Last updated 9 months ago.

15.1 match 7.90 score 256 scripts 14 dependents

e-sensing

sits:Satellite Image Time Series Analysis for Earth Observation Data Cubes

An end-to-end toolkit for land use and land cover classification using big Earth observation data, based on machine learning methods applied to satellite image data cubes, as described in Simoes et al (2021) <doi:10.3390/rs13132428>. Builds regular data cubes from collections in AWS, Microsoft Planetary Computer, Brazil Data Cube, Copernicus Data Space Environment (CDSE), Digital Earth Africa, Digital Earth Australia, NASA HLS using the Spatio-temporal Asset Catalog (STAC) protocol (<https://stacspec.org/>) and the 'gdalcubes' R package developed by Appel and Pebesma (2019) <doi:10.3390/data4030092>. Supports visualization methods for images and time series and smoothing filters for dealing with noisy time series. Includes functions for quality assessment of training samples using self-organized maps as presented by Santos et al (2021) <doi:10.1016/j.isprsjprs.2021.04.014>. Includes methods to reduce training samples imbalance proposed by Chawla et al (2002) <doi:10.1613/jair.953>. Provides machine learning methods including support vector machines, random forests, extreme gradient boosting, multi-layer perceptrons, temporal convolutional neural networks proposed by Pelletier et al (2019) <doi:10.3390/rs11050523>, and temporal attention encoders by Garnot and Landrieu (2020) <doi:10.48550/arXiv.2007.00586>. Supports GPU processing of deep learning models using torch <https://torch.mlverse.org/>. Performs efficient classification of big Earth observation data cubes and includes functions for post-classification smoothing based on Bayesian inference as described by Camara et al (2024) <doi:10.3390/rs16234572>, and methods for active learning and uncertainty assessment. Supports region-based time series analysis using package supercells <https://jakubnowosad.com/supercells/>. Enables best practices for estimating area and assessing accuracy of land change as recommended by Olofsson et al (2014) <doi:10.1016/j.rse.2014.02.015>. Minimum recommended requirements: 16 GB RAM and 4 CPU dual-core.

Maintained by Gilberto Camara. Last updated 1 months ago.

big-earth-datacbersearth-observationeo-datacubesgeospatialimage-time-seriesland-cover-classificationlandsatplanetary-computerr-spatialremote-sensingrspatialsatellite-image-time-seriessatellite-imagerysentinel-2stac-apistac-catalogcpp

11.4 match 494 stars 9.50 score 384 scripts

bioc

PDATK:Pancreatic Ductal Adenocarcinoma Tool-Kit

Pancreatic ductal adenocarcinoma (PDA) has a relatively poor prognosis and is one of the most lethal cancers. Molecular classification of gene expression profiles holds the potential to identify meaningful subtypes which can inform therapeutic strategy in the clinical setting. The Pancreatic Cancer Adenocarcinoma Tool-Kit (PDATK) provides an S4 class-based interface for performing unsupervised subtype discovery, cross-cohort meta-clustering, gene-expression-based classification, and subsequent survival analysis to identify prognostically useful subtypes in pancreatic cancer and beyond. Two novel methods, Consensus Subtypes in Pancreatic Cancer (CSPC) and Pancreatic Cancer Overall Survival Predictor (PCOSP) are included for consensus-based meta-clustering and overall-survival prediction, respectively. Additionally, four published subtype classifiers and three published prognostic gene signatures are included to allow users to easily recreate published results, apply existing classifiers to new data, and benchmark the relative performance of new methods. The use of existing Bioconductor classes as input to all PDATK classes and methods enables integration with existing Bioconductor datasets, including the 21 pancreatic cancer patient cohorts available in the MetaGxPancreas data package. PDATK has been used to replicate results from Sandhu et al (2019) [https://doi.org/10.1200/cci.18.00102] and an additional paper is in the works using CSPC to validate subtypes from the included published classifiers, both of which use the data available in MetaGxPancreas. The inclusion of subtype centroids and prognostic gene signatures from these and other publications will enable researchers and clinicians to classify novel patient gene expression data, allowing the direct clinical application of the classifiers included in PDATK. Overall, PDATK provides a rich set of tools to identify and validate useful prognostic and molecular subtypes based on gene-expression data, benchmark new classifiers against existing ones, and apply discovered classifiers on novel patient data to inform clinical decision making.

Maintained by Benjamin Haibe-Kains. Last updated 5 months ago.

geneexpressionpharmacogeneticspharmacogenomicssoftwareclassificationsurvivalclusteringgeneprediction

16.6 match 1 stars 4.31 score 17 scripts

larssnip

microclass:Tools for taxonomic classification of prokaryotes

Functions for working with taxonomic classifications in R

Maintained by Lars Snipen. Last updated 1 years ago.

cpp

11.8 match 4 stars 4.68 score 20 scripts

fberding

aifeducation:Artificial Intelligence for Education

In social and educational settings, the use of Artificial Intelligence (AI) is a challenging task. Relevant data is often only available in handwritten forms, or the use of data is restricted by privacy policies. This often leads to small data sets. Furthermore, in the educational and social sciences, data is often unbalanced in terms of frequencies. To support educators as well as educational and social researchers in using the potentials of AI for their work, this package provides a unified interface for neural nets in 'PyTorch' to deal with natural language problems. In addition, the package ships with a shiny app, providing a graphical user interface. This allows the usage of AI for people without skills in writing python/R scripts. The tools integrate existing mathematical and statistical methods for dealing with small data sets via pseudo-labeling (e.g. Cascante-Bonilla et al. (2020) <doi:10.48550/arXiv.2001.06001>) and imbalanced data via the creation of synthetic cases (e.g. Bunkhumpornpat et al. (2012) <doi:10.1007/s10489-011-0287-y>). Performance evaluation of AI is connected to measures from content analysis which educational and social researchers are generally more familiar with (e.g. Berding & Pargmann (2022) <doi:10.30819/5581>, Gwet (2014) <ISBN:978-0-9708062-8-4>, Krippendorff (2019) <doi:10.4135/9781071878781>). Estimation of energy consumption and CO2 emissions during model training is done with the 'python' library 'codecarbon'. Finally, all objects created with this package allow to share trained AI models with other people.

Maintained by Berding Florian. Last updated 1 months ago.

cpp

9.6 match 4.48 score 8 scripts

ajwills72

grt:General Recognition Theory

Functions to generate and analyze data for psychology experiments based on the General Recognition Theory.

Maintained by Andy Wills. Last updated 8 years ago.

13.4 match 2.34 score 44 scripts

alanarnholt

BSDA:Basic Statistics and Data Analysis

Data sets for book "Basic Statistics and Data Analysis" by Larry J. Kitchens.

Maintained by Alan T. Arnholt. Last updated 2 years ago.

3.3 match 7 stars 9.11 score 1.3k scripts 6 dependents

r-spatial

classInt:Choose Univariate Class Intervals

Selected commonly used methods for choosing univariate class intervals for mapping or other graphics purposes.

Maintained by Roger Bivand. Last updated 3 months ago.

fortran

1.9 match 34 stars 16.02 score 3.2k scripts 1.2k dependents

dmarchette

cccd:Class Cover Catch Digraphs

Class Cover Catch Digraphs, neighborhood graphs, and relatives.

Maintained by David J. Marchette. Last updated 3 years ago.

12.8 match 1 stars 2.12 score 131 scripts

viroli

quantileDA:Quantile Classifier

Code for centroid, median and quantile classifiers.

Maintained by Cinzia Viroli. Last updated 12 months ago.

26.4 match 1.00 score 10 scripts

cran

Compositional:Compositional Data Analysis

Regression, classification, contour plots, hypothesis testing and fitting of distributions for compositional data are some of the functions included. We further include functions for percentages (or proportions). The standard textbook for such data is John Aitchison's (1986) "The statistical analysis of compositional data". Relevant papers include: a) Tsagris M.T., Preston S. and Wood A.T.A. (2011). "A data-based power transformation for compositional data". Fourth International International Workshop on Compositional Data Analysis. <doi:10.48550/arXiv.1106.1451> b) Tsagris M. (2014). "The k-NN algorithm for compositional data: a revised approach with and without zero values present". Journal of Data Science, 12(3): 519--534. <doi:10.6339/JDS.201407_12(3).0008>. c) Tsagris M. (2015). "A novel, divergence based, regression for compositional data". Proceedings of the 28th Panhellenic Statistics Conference, 15-18 April 2015, Athens, Greece, 430--444. <doi:10.48550/arXiv.1511.07600>. d) Tsagris M. (2015). "Regression analysis with compositional data containing zero values". Chilean Journal of Statistics, 6(2): 47--57. <https://soche.cl/chjs/volumes/06/02/Tsagris(2015).pdf>. e) Tsagris M., Preston S. and Wood A.T.A. (2016). "Improved supervised classification for compositional data using the alpha-transformation". Journal of Classification, 33(2): 243--261. <doi:10.1007/s00357-016-9207-5>. f) Tsagris M., Preston S. and Wood A.T.A. (2017). "Nonparametric hypothesis testing for equality of means on the simplex". Journal of Statistical Computation and Simulation, 87(2): 406--422. <doi:10.1080/00949655.2016.1216554>. g) Tsagris M. and Stewart C. (2018). "A Dirichlet regression model for compositional data with zeros". Lobachevskii Journal of Mathematics, 39(3): 398--412. <doi:10.1134/S1995080218030198>. h) Alenazi A. (2019). "Regression for compositional data with compositional data as predictor variables with or without zero values". Journal of Data Science, 17(1): 219--238. <doi:10.6339/JDS.201901_17(1).0010>. i) Tsagris M. and Stewart C. (2020). "A folded model for compositional data analysis". Australian and New Zealand Journal of Statistics, 62(2): 249--277. <doi:10.1111/anzs.12289>. j) Alenazi A.A. (2022). "f-divergence regression models for compositional data". Pakistan Journal of Statistics and Operation Research, 18(4): 867--882. <doi:10.18187/pjsor.v18i4.3969>. k) Tsagris M. and Stewart C. (2022). "A Review of Flexible Transformations for Modeling Compositional Data". In Advances and Innovations in Statistics and Data Science, pp. 225--234. <doi:10.1007/978-3-031-08329-7_10>. l) Alenazi A. (2023). "A review of compositional data analysis and recent advances". Communications in Statistics--Theory and Methods, 52(16): 5535--5567. <doi:10.1080/03610926.2021.2014890>. m) Tsagris M., Alenazi A. and Stewart C. (2023). "Flexible non-parametric regression models for compositional response data with zeros". Statistics and Computing, 33(106). <doi:10.1007/s11222-023-10277-5>. n) Tsagris. M. (2025). "Constrained least squares simplicial-simplicial regression". Statistics and Computing, 35(27). <doi:10.1007/s11222-024-10560-z>. o) Sevinc V. and Tsagris. M. (2024). "Energy Based Equality of Distributions Testing for Compositional Data". <doi:10.48550/arXiv.2412.05199>.

Maintained by Michail Tsagris. Last updated 2 months ago.

6.9 match 3 stars 3.64 score 4 dependents

inbo

effectclass:Classification and Visualisation of Effects

Classify effects by comparing the confidence intervals with thresholds.

Maintained by Thierry Onkelinx. Last updated 10 months ago.

effect-sizefan-chart

4.2 match 6 stars 5.30 score 37 scripts 1 dependents

mthrun

DataVisualizations:Visualizations of High-Dimensional Data

Gives access to data visualisation methods that are relevant from the data scientist's point of view. The flagship idea of 'DataVisualizations' is the mirrored density plot (MD-plot) for either classified or non-classified multivariate data published in Thrun, M.C. et al.: "Analyzing the Fine Structure of Distributions" (2020), PLoS ONE, <DOI:10.1371/journal.pone.0238835>. The MD-plot outperforms the box-and-whisker diagram (box plot), violin plot and bean plot and geom_violin plot of ggplot2. Furthermore, a collection of various visualization methods for univariate data is provided. In the case of exploratory data analysis, 'DataVisualizations' makes it possible to inspect the distribution of each feature of a dataset visually through a combination of four methods. One of these methods is the Pareto density estimation (PDE) of the probability density function (pdf). Additionally, visualizations of the distribution of distances using PDE, the scatter-density plot using PDE for two variables as well as the Shepard density plot and the Bland-Altman plot are presented here. Pertaining to classified high-dimensional data, a number of visualizations are described, such as f.ex. the heat map and silhouette plot. A political map of the world or Germany can be visualized with the additional information defined by a classification of countries or regions. By extending the political map further, an uncomplicated function for a Choropleth map can be used which is useful for measurements across a geographic area. For categorical features, the Pie charts, slope charts and fan plots, improved by the ABC analysis, become usable. More detailed explanations are found in the book by Thrun, M.C.: "Projection-Based Clustering through Self-Organization and Swarm Intelligence" (2018) <DOI:10.1007/978-3-658-20540-9>.

Maintained by Michael Thrun. Last updated 2 months ago.

cpp

2.8 match 7 stars 7.72 score 118 scripts 7 dependents

andysouth

rworldmap:Mapping Global Data

Enables mapping of country level and gridded user datasets.

Maintained by Andy South. Last updated 2 years ago.

1.8 match 30 stars 11.83 score 3.2k scripts 14 dependents

dmurdoch

plotrix:Various Plotting Functions

Lots of plots, various labeling, axis and color scaling functions. The author/maintainer died in September 2023.

Maintained by Duncan Murdoch. Last updated 1 years ago.

1.8 match 5 stars 11.31 score 9.2k scripts 361 dependents

klausvigo

kknn:Weighted k-Nearest Neighbors

Weighted k-Nearest Neighbors for Classification, Regression and Clustering.

Maintained by Klaus Schliep. Last updated 4 years ago.

nearest-neighbor

1.8 match 23 stars 11.08 score 4.6k scripts 41 dependents

navdeep-g

h2o4gpu:Interface to 'H2O4GPU'

Interface to 'H2O4GPU' <https://github.com/h2oai/h2o4gpu>, a collection of 'GPU' solvers for machine learning algorithms.

Maintained by Navdeep Gill. Last updated 4 years ago.

6.0 match 1 stars 3.24 score 35 scripts