Showing 63 of total 63 results (show query)

mastoffel

rptR:Repeatability Estimation for Gaussian and Non-Gaussian Data

Estimating repeatability (intra-class correlation) from Gaussian, binary, proportion and Poisson data.

Maintained by Martin Stoffel. Last updated 6 months ago.

5.2 match 17 stars 8.53 score 112 scripts 2 dependents

mmrabe

designr:Balanced Factorial Designs

Generate balanced factorial designs with crossed and nested random and fixed effects <https://github.com/mmrabe/designr>.

Maintained by Maximilian M. Rabe. Last updated 2 years ago.

1.5 match 10 stars 5.18 score 15 scripts

andrewzm

FRK:Fixed Rank Kriging

A tool for spatial/spatio-temporal modelling and prediction with large datasets. The approach models the field, and hence the covariance function, using a set of basis functions. This fixed-rank basis-function representation facilitates the modelling of big data, and the method naturally allows for non-stationary, anisotropic covariance functions. Discretisation of the spatial domain into so-called basic areal units (BAUs) facilitates the use of observations with varying support (i.e., both point-referenced and areal supports, potentially simultaneously), and prediction over arbitrary user-specified regions. `FRK` also supports inference over various manifolds, including the 2D plane and 3D sphere, and it provides helper functions to model, fit, predict, and plot with relative ease. Version 2.0.0 and above also supports the modelling of non-Gaussian data (e.g., Poisson, binomial, negative-binomial, gamma, and inverse-Gaussian) by employing a generalised linear mixed model (GLMM) framework. Zammit-Mangion and Cressie <doi:10.18637/jss.v098.i04> describe `FRK` in a Gaussian setting, and detail its use of basis functions and BAUs, while Sainsbury-Dale, Zammit-Mangion, and Cressie <doi:10.18637/jss.v108.i10> describe `FRK` in a non-Gaussian setting; two vignettes are available that summarise these papers and provide additional examples.

Maintained by Andrew Zammit-Mangion. Last updated 6 months ago.

cpp

0.5 match 71 stars 8.70 score 188 scripts 1 dependents

linlf

altmeta:Alternative Meta-Analysis Methods

Provides alternative statistical methods for meta-analysis, including: - bivariate generalized linear mixed models for synthesizing odds ratios, relative risks, and risk differences (Chu et al., 2012 <doi:10.1177/0962280210393712>) - heterogeneity tests and measures and penalization methods that are robust to outliers (Lin et al., 2017 <doi:10.1111/biom.12543>; Wang et al., 2022 <doi:10.1002/sim.9261>); - measures, tests, and visualization tools for publication bias or small-study effects (Lin and Chu, 2018 <doi:10.1111/biom.12817>; Lin, 2019 <doi:10.1002/jrsm.1340>; Lin, 2020 <doi:10.1177/0962280220910172>; Shi et al., 2020 <doi:10.1002/jrsm.1415>); - meta-analysis of combining standardized mean differences and odds ratios (Jing et al., 2023 <doi:10.1080/10543406.2022.2105345>); - meta-analysis of diagnostic tests for synthesizing sensitivities, specificities, etc. (Reitsma et al., 2005 <doi:10.1016/j.jclinepi.2005.02.022>; Chu and Cole, 2006 <doi:10.1016/j.jclinepi.2006.06.011>); - meta-analysis methods for synthesizing proportions (Lin and Chu, 2020 <doi:10.1097/ede.0000000000001232>); - models for multivariate meta-analysis, measures of inconsistency degrees of freedom in Bayesian network meta-analysis, and predictive P-score (Lin and Chu, 2018 <doi:10.1002/jrsm.1293>; Lin, 2020 <doi:10.1080/10543406.2020.1852247>; Rosenberger et al., 2021 <doi:10.1186/s12874-021-01397-5>).

Maintained by Lifeng Lin. Last updated 6 months ago.

jagscpp

2.3 match 1.04 score 11 scripts