Showing 133 of total 133 results (show query)

cran

bayesm:Bayesian Inference for Marketing/Micro-Econometrics

Covers many important models used in marketing and micro-econometrics applications. The package includes: Bayes Regression (univariate or multivariate dep var), Bayes Seemingly Unrelated Regression (SUR), Binary and Ordinal Probit, Multinomial Logit (MNL) and Multinomial Probit (MNP), Multivariate Probit, Negative Binomial (Poisson) Regression, Multivariate Mixtures of Normals (including clustering), Dirichlet Process Prior Density Estimation with normal base, Hierarchical Linear Models with normal prior and covariates, Hierarchical Linear Models with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a Dirichlet Process prior and covariates, Hierarchical Negative Binomial Regression Models, Bayesian analysis of choice-based conjoint data, Bayesian treatment of linear instrumental variables models, Analysis of Multivariate Ordinal survey data with scale usage heterogeneity (as in Rossi et al, JASA (01)), Bayesian Analysis of Aggregate Random Coefficient Logit Models as in BLP (see Jiang, Manchanda, Rossi 2009) For further reference, consult our book, Bayesian Statistics and Marketing by Rossi, Allenby and McCulloch (Wiley first edition 2005 and second forthcoming) and Bayesian Non- and Semi-Parametric Methods and Applications (Princeton U Press 2014).

Maintained by Peter Rossi. Last updated 1 years ago.

openblascpp

11.7 match 20 stars 8.20 score 322 scripts 43 dependents

maciejdanko

hopit:Hierarchical Ordered Probit Models with Application to Reporting Heterogeneity

Self-reported health, happiness, attitudes, and other statuses or perceptions are often the subject of biases that may come from different sources. For example, the evaluation of an individual’s own health may depend on previous medical diagnoses, functional status, and symptoms and signs of illness; as on well as life-style behaviors, including contextual social, gender, age-specific, linguistic and other cultural factors (Jylha 2009 <doi:10.1016/j.socscimed.2009.05.013>; Oksuzyan et al. 2019 <doi:10.1016/j.socscimed.2019.03.002>). The hopit package offers versatile functions for analyzing different self-reported ordinal variables, and for helping to estimate their biases. Specifically, the package provides the function to fit a generalized ordered probit model that regresses original self-reported status measures on two sets of independent variables (King et al. 2004 <doi:10.1017/S0003055403000881>; Jurges 2007 <doi:10.1002/hec.1134>; Oksuzyan et al. 2019 <doi:10.1016/j.socscimed.2019.03.002>). The first set of variables (e.g., health variables) included in the regression are individual statuses and characteristics that are directly related to the self-reported variable. In the case of self-reported health, these could be chronic conditions, mobility level, difficulties with daily activities, performance on grip strength tests, anthropometric measures, and lifestyle behaviors. The second set of independent variables (threshold variables) is used to model cut-points between adjacent self-reported response categories as functions of individual characteristics, such as gender, age group, education, and country (Oksuzyan et al. 2019 <doi:10.1016/j.socscimed.2019.03.002>). The model helps to adjust for specific socio-demographic and cultural differences in how the continuous latent health is projected onto the ordinal self-rated measure. The fitted model can be used to calculate an individual predicted latent status variable, a latent index, and standardized latent coefficients; and makes it possible to reclassify a categorical status measure that has been adjusted for inter-individual differences in reporting behavior.

Maintained by Maciej J. Danko. Last updated 2 years ago.

cpp

3.4 match 6 stars 4.95 score 5 scripts

bbolker

margins:Marginal Effects for Model Objects

An R port of the margins command from 'Stata', which can be used to calculate marginal (or partial) effects from model objects.

Maintained by Ben Bolker. Last updated 8 months ago.

1.2 match 2 stars 9.85 score 956 scripts 1 dependents

jacky11

imp4p:Imputation for Proteomics

Functions to analyse missing value mechanisms and to impute data sets in the context of bottom-up MS-based proteomics.

Maintained by Quentin Giai Gianetto. Last updated 4 years ago.

cpp

3.7 match 1 stars 2.00 score 33 scripts 1 dependents

ikosmidis

detectseparation:Detect and Check for Separation and Infinite Maximum Likelihood Estimates

Provides pre-fit and post-fit methods for detecting separation and infinite maximum likelihood estimates in generalized linear models with categorical responses. The pre-fit methods apply on binomial-response generalized liner models such as logit, probit and cloglog regression, and can be directly supplied as fitting methods to the glm() function. They solve the linear programming problems for the detection of separation developed in Konis (2007, <https://ora.ox.ac.uk/objects/uuid:8f9ee0d0-d78e-4101-9ab4-f9cbceed2a2a>) using 'ROI' <https://cran.r-project.org/package=ROI> or 'lpSolveAPI' <https://cran.r-project.org/package=lpSolveAPI>. The post-fit methods apply to models with categorical responses, including binomial-response generalized linear models and multinomial-response models, such as baseline category logits and adjacent category logits models; for example, the models implemented in the 'brglm2' <https://cran.r-project.org/package=brglm2> package. The post-fit methods successively refit the model with increasing number of iteratively reweighted least squares iterations, and monitor the ratio of the estimated standard error for each parameter to what it has been in the first iteration. According to the results in Lesaffre & Albert (1989, <https://www.jstor.org/stable/2345845>), divergence of those ratios indicates data separation.

Maintained by Ioannis Kosmidis. Last updated 3 years ago.

0.5 match 7 stars 6.74 score 23 scripts 4 dependents

cran

frailtypack:Shared, Joint (Generalized) Frailty Models; Surrogate Endpoints

The following several classes of frailty models using a penalized likelihood estimation on the hazard function but also a parametric estimation can be fit using this R package: 1) A shared frailty model (with gamma or log-normal frailty distribution) and Cox proportional hazard model. Clustered and recurrent survival times can be studied. 2) Additive frailty models for proportional hazard models with two correlated random effects (intercept random effect with random slope). 3) Nested frailty models for hierarchically clustered data (with 2 levels of clustering) by including two iid gamma random effects. 4) Joint frailty models in the context of the joint modelling for recurrent events with terminal event for clustered data or not. A joint frailty model for two semi-competing risks and clustered data is also proposed. 5) Joint general frailty models in the context of the joint modelling for recurrent events with terminal event data with two independent frailty terms. 6) Joint Nested frailty models in the context of the joint modelling for recurrent events with terminal event, for hierarchically clustered data (with two levels of clustering) by including two iid gamma random effects. 7) Multivariate joint frailty models for two types of recurrent events and a terminal event. 8) Joint models for longitudinal data and a terminal event. 9) Trivariate joint models for longitudinal data, recurrent events and a terminal event. 10) Joint frailty models for the validation of surrogate endpoints in multiple randomized clinical trials with failure-time and/or longitudinal endpoints with the possibility to use a mediation analysis model. 11) Conditional and Marginal two-part joint models for longitudinal semicontinuous data and a terminal event. 12) Joint frailty-copula models for the validation of surrogate endpoints in multiple randomized clinical trials with failure-time endpoints. 13) Generalized shared and joint frailty models for recurrent and terminal events. Proportional hazards (PH), additive hazard (AH), proportional odds (PO) and probit models are available in a fully parametric framework. For PH and AH models, it is possible to consider type-varying coefficients and flexible semiparametric hazard function. Prediction values are available (for a terminal event or for a new recurrent event). Left-truncated (not for Joint model), right-censored data, interval-censored data (only for Cox proportional hazard and shared frailty model) and strata are allowed. In each model, the random effects have the gamma or normal distribution. Now, you can also consider time-varying covariates effects in Cox, shared and joint frailty models (1-5). The package includes concordance measures for Cox proportional hazards models and for shared frailty models. 14) Competing Joint Frailty Model: A single type of recurrent event and two terminal events. 15) functions to compute power and sample size for four Gamma-frailty-based designs: Shared Frailty Models, Nested Frailty Models, Joint Frailty Models, and General Joint Frailty Models. Each design includes two primary functions: a power function, which computes power given a specified sample size; and a sample size function, which computes the required sample size to achieve a specified power. Moreover, the package can be used with its shiny application, in a local mode or by following the link below.

Maintained by Virginie Rondeau. Last updated 11 days ago.

fortranopenmp

0.5 match 7 stars 5.56 score 1 dependents

rsginc

RSGHB:Functions for Hierarchical Bayesian Estimation: A Flexible Approach

Functions for estimating models using a Hierarchical Bayesian (HB) framework. The flexibility comes in allowing the user to specify the likelihood function directly instead of assuming predetermined model structures. Types of models that can be estimated with this code include the family of discrete choice models (Multinomial Logit, Mixed Logit, Nested Logit, Error Components Logit and Latent Class) as well ordered response models like ordered probit and ordered logit. In addition, the package allows for flexibility in specifying parameters as either fixed (non-varying across individuals) or random with continuous distributions. Parameter distributions supported include normal, positive/negative log-normal, positive/negative censored normal, and the Johnson SB distribution. Kenneth Train's Matlab and Gauss code for doing Hierarchical Bayesian estimation has served as the basis for a few of the functions included in this package. These Matlab/Gauss functions have been rewritten to be optimized within R. Considerable code has been added to increase the flexibility and usability of the code base. Train's original Gauss and Matlab code can be found here: <http://elsa.berkeley.edu/Software/abstracts/train1006mxlhb.html> See Train's chapter on HB in Discrete Choice with Simulation here: <http://elsa.berkeley.edu/books/choice2.html>; and his paper on using HB with non-normal distributions here: <http://eml.berkeley.edu//~train/trainsonnier.pdf>. The authors would also like to thank the invaluable contributions of Stephane Hess and the Choice Modelling Centre: <https://cmc.leeds.ac.uk/>.

Maintained by Jeff Dumont. Last updated 6 years ago.

0.5 match 26 stars 5.30 score 25 scripts 1 dependents

goldingn

BayesComm:Bayesian Community Ecology Analysis

Bayesian multivariate binary (probit) regression models for analysis of ecological communities.

Maintained by Nick Golding. Last updated 9 years ago.

openblascpp

0.6 match 9 stars 4.35 score 25 scripts

weiliangqiu

correctedAUC:Correcting AUC for Measurement Error

Correcting area under ROC (AUC) for measurement error based on probit-shift model.

Maintained by Weiliang Qiu. Last updated 9 years ago.

2.2 match 1.00 score 5 scripts

fbertran

sageR:Applied Statistics for Economics and Management with R

Datasets and functions for the book "Statistiques pour l’économie et la gestion", "Théorie et applications en entreprise", F. Bertrand, Ch. Derquenne, G. Dufrénot, F. Jawadi and M. Maumy, C. Borsenberger editor, (2021, ISBN:9782807319448, De Boeck Supérieur, Louvain-la-Neuve). The first chapter of the book is dedicated to an introduction to statistics and their world. The second chapter deals with univariate exploratory statistics and graphics. The third chapter deals with bivariate and multivariate exploratory statistics and graphics. The fourth chapter is dedicated to data exploration with Principal Component Analysis. The fifth chapter is dedicated to data exploration with Correspondance Analysis. The sixth chapter is dedicated to data exploration with Multiple Correspondance Analysis. The seventh chapter is dedicated to data exploration with automatic clustering. The eighth chapter is dedicated to an introduction to probability theory and classical probability distributions. The ninth chapter is dedicated to an estimation theory, one-sample and two-sample tests. The tenth chapter is dedicated to an Gaussian linear model. The eleventh chapter is dedicated to an introduction to time series. The twelfth chapter is dedicated to an introduction to probit and logit models. Various example datasets are shipped with the package as well as some new functions.

Maintained by Frederic Bertrand. Last updated 2 years ago.

0.5 match 2 stars 4.18 score 15 scripts

dsjohnson

stocc:Fit a Spatial Occupancy Model via Gibbs Sampling

Fit a spatial-temporal occupancy models using a probit formulation instead of a traditional logit model.

Maintained by Devin S. Johnson. Last updated 2 years ago.

0.5 match 1 stars 1.18 score 15 scripts