Showing 200 of total 2596 results (show query)

tidyverse

purrr:Functional Programming Tools

A complete and consistent functional programming toolkit for R.

Maintained by Hadley Wickham. Last updated 1 months ago.

functional-programming

7.1 match 1.3k stars 22.12 score 59k scripts 6.9k dependents

thinkr-open

fcuk:The Ultimate Helper for Clumsy Fingers

Automatically suggests a correction when a typo occurs.

Maintained by Vincent Guyader. Last updated 1 years ago.

errorfcuk

19.1 match 92 stars 7.05 score 49 scripts

pharmar

riskmetric:Risk Metrics to Evaluating R Packages

Facilities for assessing R packages against a number of metrics to help quantify their robustness.

Maintained by Eli Miller. Last updated 9 days ago.

13.0 match 167 stars 8.89 score 43 scripts

bsvars

bsvars:Bayesian Estimation of Structural Vector Autoregressive Models

Provides fast and efficient procedures for Bayesian analysis of Structural Vector Autoregressions. This package estimates a wide range of models, including homo-, heteroskedastic, and non-normal specifications. Structural models can be identified by adjustable exclusion restrictions, time-varying volatility, or non-normality. They all include a flexible three-level equation-specific local-global hierarchical prior distribution for the estimated level of shrinkage for autoregressive and structural parameters. Additionally, the package facilitates predictive and structural analyses such as impulse responses, forecast error variance and historical decompositions, forecasting, verification of heteroskedasticity, non-normality, and hypotheses on autoregressive parameters, as well as analyses of structural shocks, volatilities, and fitted values. Beautiful plots, informative summary functions, and extensive documentation including the vignette by Woźniak (2024) <doi:10.48550/arXiv.2410.15090> complement all this. The implemented techniques align closely with those presented in Lütkepohl, Shang, Uzeda, & Woźniak (2024) <doi:10.48550/arXiv.2404.11057>, Lütkepohl & Woźniak (2020) <doi:10.1016/j.jedc.2020.103862>, and Song & Woźniak (2021) <doi:10.1093/acrefore/9780190625979.013.174>. The 'bsvars' package is aligned regarding objects, workflows, and code structure with the R package 'bsvarSIGNs' by Wang & Woźniak (2024) <doi:10.32614/CRAN.package.bsvarSIGNs>, and they constitute an integrated toolset.

Maintained by Tomasz Woźniak. Last updated 1 months ago.

bayesian-inferenceeconometricsvector-autoregressionopenblascppopenmp

14.3 match 46 stars 7.67 score 32 scripts 1 dependents

r-forge

car:Companion to Applied Regression

Functions to Accompany J. Fox and S. Weisberg, An R Companion to Applied Regression, Third Edition, Sage, 2019.

Maintained by John Fox. Last updated 5 months ago.

6.9 match 15.29 score 43k scripts 901 dependents

briencj

asremlPlus:Augments 'ASReml-R' in Fitting Mixed Models and Packages Generally in Exploring Prediction Differences

Assists in automating the selection of terms to include in mixed models when 'asreml' is used to fit the models. Procedures are available for choosing models that conform to the hierarchy or marginality principle, for fitting and choosing between two-dimensional spatial models using correlation, natural cubic smoothing spline and P-spline models. A history of the fitting of a sequence of models is kept in a data frame. Also used to compute functions and contrasts of, to investigate differences between and to plot predictions obtained using any model fitting function. The content falls into the following natural groupings: (i) Data, (ii) Model modification functions, (iii) Model selection and description functions, (iv) Model diagnostics and simulation functions, (v) Prediction production and presentation functions, (vi) Response transformation functions, (vii) Object manipulation functions, and (viii) Miscellaneous functions (for further details see 'asremlPlus-package' in help). The 'asreml' package provides a computationally efficient algorithm for fitting a wide range of linear mixed models using Residual Maximum Likelihood. It is a commercial package and a license for it can be purchased from 'VSNi' <https://vsni.co.uk/> as 'asreml-R', who will supply a zip file for local installation/updating (see <https://asreml.kb.vsni.co.uk/>). It is not needed for functions that are methods for 'alldiffs' and 'data.frame' objects. The package 'asremPlus' can also be installed from <http://chris.brien.name/rpackages/>.

Maintained by Chris Brien. Last updated 28 days ago.

asremlmixed-models

9.9 match 19 stars 9.34 score 200 scripts

devopifex

erratum:Handle Error and Warning Messages

Elegantly handle error and warning messages.

Maintained by John Coene. Last updated 1 years ago.

error-handlingwarning

29.0 match 22 stars 3.04 score 5 scripts

rtsay1

MTS:All-Purpose Toolkit for Analyzing Multivariate Time Series (MTS) and Estimating Multivariate Volatility Models

Multivariate Time Series (MTS) is a general package for analyzing multivariate linear time series and estimating multivariate volatility models. It also handles factor models, constrained factor models, asymptotic principal component analysis commonly used in finance and econometrics, and principal volatility component analysis. (a) For the multivariate linear time series analysis, the package performs model specification, estimation, model checking, and prediction for many widely used models, including vector AR models, vector MA models, vector ARMA models, seasonal vector ARMA models, VAR models with exogenous variables, multivariate regression models with time series errors, augmented VAR models, and Error-correction VAR models for co-integrated time series. For model specification, the package performs structural specification to overcome the difficulties of identifiability of VARMA models. The methods used for structural specification include Kronecker indices and Scalar Component Models. (b) For multivariate volatility modeling, the MTS package handles several commonly used models, including multivariate exponentially weighted moving-average volatility, Cholesky decomposition volatility models, dynamic conditional correlation (DCC) models, copula-based volatility models, and low-dimensional BEKK models. The package also considers multiple tests for conditional heteroscedasticity, including rank-based statistics. (c) Finally, the MTS package also performs forecasting using diffusion index , transfer function analysis, Bayesian estimation of VAR models, and multivariate time series analysis with missing values.Users can also use the package to simulate VARMA models, to compute impulse response functions of a fitted VARMA model, and to calculate theoretical cross-covariance matrices of a given VARMA model.

Maintained by Ruey S. Tsay. Last updated 3 years ago.

cpp

13.3 match 6 stars 6.52 score 272 scripts 6 dependents

cran

sae:Small Area Estimation

Functions for small area estimation.

Maintained by Yolanda Marhuenda. Last updated 5 years ago.

14.1 match 6 stars 5.49 score 83 scripts 8 dependents

cran

fGarch:Rmetrics - Autoregressive Conditional Heteroskedastic Modelling

Analyze and model heteroskedastic behavior in financial time series.

Maintained by Georgi N. Boshnakov. Last updated 12 months ago.

fortran

9.2 match 6 stars 8.20 score 1.1k scripts 51 dependents

graemetlloyd

Claddis:Measuring Morphological Diversity and Evolutionary Tempo

Measures morphological diversity from discrete character data and estimates evolutionary tempo on phylogenetic trees. Imports morphological data from #NEXUS (Maddison et al. (1997) <doi:10.1093/sysbio/46.4.590>) format with read_nexus_matrix(), and writes to both #NEXUS and TNT format (Goloboff et al. (2008) <doi:10.1111/j.1096-0031.2008.00217.x>). Main functions are test_rates(), which implements AIC and likelihood ratio tests for discrete character rates introduced across Lloyd et al. (2012) <doi:10.1111/j.1558-5646.2011.01460.x>, Brusatte et al. (2014) <doi:10.1016/j.cub.2014.08.034>, Close et al. (2015) <doi:10.1016/j.cub.2015.06.047>, and Lloyd (2016) <doi:10.1111/bij.12746>, and calculate_morphological_distances(), which implements multiple discrete character distance metrics from Gower (1971) <doi:10.2307/2528823>, Wills (1998) <doi:10.1006/bijl.1998.0255>, Lloyd (2016) <doi:10.1111/bij.12746>, and Hopkins and St John (2018) <doi:10.1098/rspb.2018.1784>. This also includes the GED correction from Lehmann et al. (2019) <doi:10.1111/pala.12430>. Multiple functions implement morphospace plots: plot_chronophylomorphospace() implements Sakamoto and Ruta (2012) <doi:10.1371/journal.pone.0039752>, plot_morphospace() implements Wills et al. (1994) <doi:10.1017/S009483730001263X>, plot_changes_on_tree() implements Wang and Lloyd (2016) <doi:10.1098/rspb.2016.0214>, and plot_morphospace_stack() implements Foote (1993) <doi:10.1017/S0094837300015864>. Other functions include safe_taxonomic_reduction(), which implements Wilkinson (1995) <doi:10.1093/sysbio/44.4.501>, map_dollo_changes() implements the Dollo stochastic character mapping of Tarver et al. (2018) <doi:10.1093/gbe/evy096>, and estimate_ancestral_states() implements the ancestral state options of Lloyd (2018) <doi:10.1111/pala.12380>. calculate_tree_length() and reconstruct_ancestral_states() implements the generalised algorithms from Swofford and Maddison (1992; no doi).

Maintained by Graeme T. Lloyd. Last updated 6 months ago.

9.4 match 13 stars 7.81 score 77 scripts 2 dependents

dmurdoch

plotrix:Various Plotting Functions

Lots of plots, various labeling, axis and color scaling functions. The author/maintainer died in September 2023.

Maintained by Duncan Murdoch. Last updated 1 years ago.

5.9 match 5 stars 11.31 score 9.2k scripts 361 dependents

afialkowski

SimMultiCorrData:Simulation of Correlated Data with Multiple Variable Types

Generate continuous (normal or non-normal), binary, ordinal, and count (Poisson or Negative Binomial) variables with a specified correlation matrix. It can also produce a single continuous variable. This package can be used to simulate data sets that mimic real-world situations (i.e. clinical or genetic data sets, plasmodes). All variables are generated from standard normal variables with an imposed intermediate correlation matrix. Continuous variables are simulated by specifying mean, variance, skewness, standardized kurtosis, and fifth and sixth standardized cumulants using either Fleishman's third-order (<DOI:10.1007/BF02293811>) or Headrick's fifth-order (<DOI:10.1016/S0167-9473(02)00072-5>) polynomial transformation. Binary and ordinal variables are simulated using a modification of the ordsample() function from 'GenOrd'. Count variables are simulated using the inverse cdf method. There are two simulation pathways which differ primarily according to the calculation of the intermediate correlation matrix. In Correlation Method 1, the intercorrelations involving count variables are determined using a simulation based, logarithmic correlation correction (adapting Yahav and Shmueli's 2012 method, <DOI:10.1002/asmb.901>). In Correlation Method 2, the count variables are treated as ordinal (adapting Barbiero and Ferrari's 2015 modification of GenOrd, <DOI:10.1002/asmb.2072>). There is an optional error loop that corrects the final correlation matrix to be within a user-specified precision value of the target matrix. The package also includes functions to calculate standardized cumulants for theoretical distributions or from real data sets, check if a target correlation matrix is within the possible correlation bounds (given the distributions of the simulated variables), summarize results (numerically or graphically), to verify valid power method pdfs, and to calculate lower standardized kurtosis bounds.

Maintained by Allison Cynthia Fialkowski. Last updated 7 years ago.

8.8 match 12 stars 7.58 score 44 scripts 6 dependents

alanarnholt

BSDA:Basic Statistics and Data Analysis

Data sets for book "Basic Statistics and Data Analysis" by Larry J. Kitchens.

Maintained by Alan T. Arnholt. Last updated 2 years ago.

6.8 match 7 stars 9.11 score 1.3k scripts 6 dependents

psirusteam

samplesize4surveys:Sample Size Calculations for Complex Surveys

Computes the required sample size for estimation of totals, means and proportions under complex sampling designs.

Maintained by Hugo Andres Gutierrez Rojas. Last updated 5 years ago.

12.5 match 2 stars 4.78 score 60 scripts

robertemprechtinger

metaHelper:Transforms Statistical Measures Commonly Used for Meta-Analysis

Helps calculate statistical values commonly used in meta-analysis. It provides several methods to compute different forms of standardized mean differences, as well as other values such as standard errors and standard deviations. The methods used in this package are described in the following references: Altman D G, Bland J M. (2011) <doi:10.1136/bmj.d2090> Borenstein, M., Hedges, L.V., Higgins, J.P.T. and Rothstein, H.R. (2009) <doi:10.1002/9780470743386.ch4> Chinn S. (2000) <doi:10.1002/1097-0258(20001130)19:22%3C3127::aid-sim784%3E3.0.co;2-m> Cochrane Handbook (2011) <https://handbook-5-1.cochrane.org/front_page.htm> Cooper, H., Hedges, L. V., & Valentine, J. C. (2009) <https://psycnet.apa.org/record/2009-05060-000> Cohen, J. (1977) <https://psycnet.apa.org/record/1987-98267-000> Ellis, P.D. (2009) <https://www.psychometrica.de/effect_size.html> Goulet-Pelletier, J.-C., & Cousineau, D. (2018) <doi:10.20982/tqmp.14.4.p242> Hedges, L. V. (1981) <doi:10.2307/1164588> Hedges L. V., Olkin I. (1985) <doi:10.1016/C2009-0-03396-0> Murad M H, Wang Z, Zhu Y, Saadi S, Chu H, Lin L et al. (2023) <doi:10.1136/bmj-2022-073141> Mayer M (2023) <https://search.r-project.org/CRAN/refmans/confintr/html/ci_proportion.html> Stackoverflow (2014) <https://stats.stackexchange.com/questions/82720/confidence-interval-around-binomial-estimate-of-0-or-1> Stackoverflow (2018) <https://stats.stackexchange.com/q/338043>.

Maintained by Robert Emprechtinger. Last updated 8 months ago.

15.0 match 4 stars 3.90 score

cran

bayesm:Bayesian Inference for Marketing/Micro-Econometrics

Covers many important models used in marketing and micro-econometrics applications. The package includes: Bayes Regression (univariate or multivariate dep var), Bayes Seemingly Unrelated Regression (SUR), Binary and Ordinal Probit, Multinomial Logit (MNL) and Multinomial Probit (MNP), Multivariate Probit, Negative Binomial (Poisson) Regression, Multivariate Mixtures of Normals (including clustering), Dirichlet Process Prior Density Estimation with normal base, Hierarchical Linear Models with normal prior and covariates, Hierarchical Linear Models with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a Dirichlet Process prior and covariates, Hierarchical Negative Binomial Regression Models, Bayesian analysis of choice-based conjoint data, Bayesian treatment of linear instrumental variables models, Analysis of Multivariate Ordinal survey data with scale usage heterogeneity (as in Rossi et al, JASA (01)), Bayesian Analysis of Aggregate Random Coefficient Logit Models as in BLP (see Jiang, Manchanda, Rossi 2009) For further reference, consult our book, Bayesian Statistics and Marketing by Rossi, Allenby and McCulloch (Wiley first edition 2005 and second forthcoming) and Bayesian Non- and Semi-Parametric Methods and Applications (Princeton U Press 2014).

Maintained by Peter Rossi. Last updated 1 years ago.

openblascpp

6.8 match 20 stars 8.20 score 322 scripts 43 dependents

berndbischl

BBmisc:Miscellaneous Helper Functions for B. Bischl

Miscellaneous helper functions for and from B. Bischl and some other guys, mainly for package development.

Maintained by Bernd Bischl. Last updated 2 years ago.

4.9 match 20 stars 10.59 score 980 scripts 69 dependents