Showing 77 of total 77 results (show query)

r-gregmisc

gtools:Various R Programming Tools

Functions to assist in R programming, including: - assist in developing, updating, and maintaining R and R packages ('ask', 'checkRVersion', 'getDependencies', 'keywords', 'scat'), - calculate the logit and inverse logit transformations ('logit', 'inv.logit'), - test if a value is missing, empty or contains only NA and NULL values ('invalid'), - manipulate R's .Last function ('addLast'), - define macros ('defmacro'), - detect odd and even integers ('odd', 'even'), - convert strings containing non-ASCII characters (like single quotes) to plain ASCII ('ASCIIfy'), - perform a binary search ('binsearch'), - sort strings containing both numeric and character components ('mixedsort'), - create a factor variable from the quantiles of a continuous variable ('quantcut'), - enumerate permutations and combinations ('combinations', 'permutation'), - calculate and convert between fold-change and log-ratio ('foldchange', 'logratio2foldchange', 'foldchange2logratio'), - calculate probabilities and generate random numbers from Dirichlet distributions ('rdirichlet', 'ddirichlet'), - apply a function over adjacent subsets of a vector ('running'), - modify the TCP_NODELAY ('de-Nagle') flag for socket objects, - efficient 'rbind' of data frames, even if the column names don't match ('smartbind'), - generate significance stars from p-values ('stars.pval'), - convert characters to/from ASCII codes ('asc', 'chr'), - convert character vector to ASCII representation ('ASCIIfy'), - apply title capitalization rules to a character vector ('capwords').

Maintained by Ben Bolker. Last updated 9 months ago.

3.8 match 25 stars 14.47 score 11k scripts 1.1k dependents

r-lib

fs:Cross-Platform File System Operations Based on 'libuv'

A cross-platform interface to file system operations, built on top of the 'libuv' C library.

Maintained by Gábor Csárdi. Last updated 4 months ago.

filesystemlibuvcpp

1.7 match 370 stars 20.26 score 8.1k scripts 5.2k dependents

r-lib

styler:Non-Invasive Pretty Printing of R Code

Pretty-prints R code without changing the user's formatting intent.

Maintained by Lorenz Walthert. Last updated 1 months ago.

pretty-print

1.5 match 754 stars 16.15 score 940 scripts 62 dependents

r-spatial

spdep:Spatial Dependence: Weighting Schemes, Statistics

A collection of functions to create spatial weights matrix objects from polygon 'contiguities', from point patterns by distance and tessellations, for summarizing these objects, and for permitting their use in spatial data analysis, including regional aggregation by minimum spanning tree; a collection of tests for spatial 'autocorrelation', including global 'Morans I' and 'Gearys C' proposed by 'Cliff' and 'Ord' (1973, ISBN: 0850860369) and (1981, ISBN: 0850860814), 'Hubert/Mantel' general cross product statistic, Empirical Bayes estimates and 'Assunção/Reis' (1999) <doi:10.1002/(SICI)1097-0258(19990830)18:16%3C2147::AID-SIM179%3E3.0.CO;2-I> Index, 'Getis/Ord' G ('Getis' and 'Ord' 1992) <doi:10.1111/j.1538-4632.1992.tb00261.x> and multicoloured join count statistics, 'APLE' ('Li 'et al.' ) <doi:10.1111/j.1538-4632.2007.00708.x>, local 'Moran's I', 'Gearys C' ('Anselin' 1995) <doi:10.1111/j.1538-4632.1995.tb00338.x> and 'Getis/Ord' G ('Ord' and 'Getis' 1995) <doi:10.1111/j.1538-4632.1995.tb00912.x>, 'saddlepoint' approximations ('Tiefelsdorf' 2002) <doi:10.1111/j.1538-4632.2002.tb01084.x> and exact tests for global and local 'Moran's I' ('Bivand et al.' 2009) <doi:10.1016/j.csda.2008.07.021> and 'LOSH' local indicators of spatial heteroscedasticity ('Ord' and 'Getis') <doi:10.1007/s00168-011-0492-y>. The implementation of most of these measures is described in 'Bivand' and 'Wong' (2018) <doi:10.1007/s11749-018-0599-x>, with further extensions in 'Bivand' (2022) <doi:10.1111/gean.12319>. 'Lagrange' multiplier tests for spatial dependence in linear models are provided ('Anselin et al'. 1996) <doi:10.1016/0166-0462(95)02111-6>, as are 'Rao' score tests for hypothesised spatial 'Durbin' models based on linear models ('Koley' and 'Bera' 2023) <doi:10.1080/17421772.2023.2256810>. A local indicators for categorical data (LICD) implementation based on 'Carrer et al.' (2021) <doi:10.1016/j.jas.2020.105306> and 'Bivand et al.' (2017) <doi:10.1016/j.spasta.2017.03.003> was added in 1.3-7. From 'spdep' and 'spatialreg' versions >= 1.2-1, the model fitting functions previously present in this package are defunct in 'spdep' and may be found in 'spatialreg'.

Maintained by Roger Bivand. Last updated 18 days ago.

spatial-autocorrelationspatial-dependencespatial-weights

1.3 match 131 stars 16.62 score 6.0k scripts 107 dependents

usdaforestservice

gdalraster:Bindings to the 'Geospatial Data Abstraction Library' Raster API

Interface to the Raster API of the 'Geospatial Data Abstraction Library' ('GDAL', <https://gdal.org>). Bindings are implemented in an exposed C++ class encapsulating a 'GDALDataset' and its raster band objects, along with several stand-alone functions. These support manual creation of uninitialized datasets, creation from existing raster as template, read/set dataset parameters, low level I/O, color tables, raster attribute tables, virtual raster (VRT), and 'gdalwarp' wrapper for reprojection and mosaicing. Includes 'GDAL' algorithms ('dem_proc()', 'polygonize()', 'rasterize()', etc.), and functions for coordinate transformation and spatial reference systems. Calling signatures resemble the native C, C++ and Python APIs provided by the 'GDAL' project. Includes raster 'calc()' to evaluate a given R expression on a layer or stack of layers, with pixel x/y available as variables in the expression; and raster 'combine()' to identify and count unique pixel combinations across multiple input layers, with optional output of the pixel-level combination IDs. Provides raster display using base 'graphics'. Bindings to a subset of the 'OGR' API are also included for managing vector data sources. Bindings to a subset of the Virtual Systems Interface ('VSI') are also included to support operations on 'GDAL' virtual file systems. These are general utility functions that abstract file system operations on URLs, cloud storage services, 'Zip'/'GZip'/'7z'/'RAR' archives, and in-memory files. 'gdalraster' may be useful in applications that need scalable, low-level I/O, or prefer a direct 'GDAL' API.

Maintained by Chris Toney. Last updated 15 hours ago.

gdalgeospatialrastervectorcpp

1.8 match 42 stars 9.50 score 32 scripts 3 dependents

junhuili1017

TmCalculator:Melting Temperature of Nucleic Acid Sequences

This tool is extended from methods in Bio.SeqUtils.MeltingTemp of python. The melting temperature of nucleic acid sequences can be calculated in three method, the Wallace rule (Thein & Wallace (1986) <doi:10.1016/S0140-6736(86)90739-7>), empirical formulas based on G and C content (Marmur J. (1962) <doi:10.1016/S0022-2836(62)80066-7>, Schildkraut C. (2010) <doi:10.1002/bip.360030207>, Wetmur J G (1991) <doi:10.3109/10409239109114069>, Untergasser,A. (2012) <doi:10.1093/nar/gks596>, von Ahsen N (2001) <doi:10.1093/clinchem/47.11.1956>) and nearest neighbor thermodynamics (Breslauer K J (1986) <doi:10.1073/pnas.83.11.3746>, Sugimoto N (1996) <doi:10.1093/nar/24.22.4501>, Allawi H (1998) <doi:10.1093/nar/26.11.2694>, SantaLucia J (2004) <doi:10.1146/annurev.biophys.32.110601.141800>, Freier S (1986) <doi:10.1073/pnas.83.24.9373>, Xia T (1998) <doi:10.1021/bi9809425>, Chen JL (2012) <doi:10.1021/bi3002709>, Bommarito S (2000) <doi:10.1093/nar/28.9.1929>, Turner D H (2010) <doi:10.1093/nar/gkp892>, Sugimoto N (1995) <doi:10.1016/S0048-9697(98)00088-6>, Allawi H T (1997) <doi:10.1021/bi962590c>, Santalucia N (2005) <doi:10.1093/nar/gki918>), and it can also be corrected with salt ions and chemical compound (SantaLucia J (1996) <doi:10.1021/bi951907q>, SantaLucia J(1998) <doi:10.1073/pnas.95.4.1460>, Owczarzy R (2004) <doi:10.1021/bi034621r>, Owczarzy R (2008) <doi:10.1021/bi702363u>).

Maintained by Junhui Li. Last updated 7 days ago.

1.8 match 4 stars 4.75 score 47 scripts 1 dependents

afialkowski

SimMultiCorrData:Simulation of Correlated Data with Multiple Variable Types

Generate continuous (normal or non-normal), binary, ordinal, and count (Poisson or Negative Binomial) variables with a specified correlation matrix. It can also produce a single continuous variable. This package can be used to simulate data sets that mimic real-world situations (i.e. clinical or genetic data sets, plasmodes). All variables are generated from standard normal variables with an imposed intermediate correlation matrix. Continuous variables are simulated by specifying mean, variance, skewness, standardized kurtosis, and fifth and sixth standardized cumulants using either Fleishman's third-order (<DOI:10.1007/BF02293811>) or Headrick's fifth-order (<DOI:10.1016/S0167-9473(02)00072-5>) polynomial transformation. Binary and ordinal variables are simulated using a modification of the ordsample() function from 'GenOrd'. Count variables are simulated using the inverse cdf method. There are two simulation pathways which differ primarily according to the calculation of the intermediate correlation matrix. In Correlation Method 1, the intercorrelations involving count variables are determined using a simulation based, logarithmic correlation correction (adapting Yahav and Shmueli's 2012 method, <DOI:10.1002/asmb.901>). In Correlation Method 2, the count variables are treated as ordinal (adapting Barbiero and Ferrari's 2015 modification of GenOrd, <DOI:10.1002/asmb.2072>). There is an optional error loop that corrects the final correlation matrix to be within a user-specified precision value of the target matrix. The package also includes functions to calculate standardized cumulants for theoretical distributions or from real data sets, check if a target correlation matrix is within the possible correlation bounds (given the distributions of the simulated variables), summarize results (numerically or graphically), to verify valid power method pdfs, and to calculate lower standardized kurtosis bounds.

Maintained by Allison Cynthia Fialkowski. Last updated 7 years ago.

1.1 match 12 stars 7.58 score 44 scripts 6 dependents

usaid-oha-si

Wavelength:Wavelength

USAID OHA Office. Munging of mission weekly HFR data.

Maintained by Aaron Chafetz. Last updated 2 years ago.

1.9 match 3 stars 3.39 score 55 scripts

demsarjure

autohrf:Automated Generation of Data-Informed GLM Models in Task-Based fMRI Data Analysis

Analysis of task-related functional magnetic resonance imaging (fMRI) activity at the level of individual participants is commonly based on general linear modelling (GLM) that allows us to estimate to what extent the blood oxygenation level dependent (BOLD) signal can be explained by task response predictors specified in the GLM model. The predictors are constructed by convolving the hypothesised timecourse of neural activity with an assumed hemodynamic response function (HRF). To get valid and precise estimates of task response, it is important to construct a model of neural activity that best matches actual neuronal activity. The construction of models is most often driven by predefined assumptions on the components of brain activity and their duration based on the task design and specific aims of the study. However, our assumptions about the onset and duration of component processes might be wrong and can also differ across brain regions. This can result in inappropriate or suboptimal models, bad fitting of the model to the actual data and invalid estimations of brain activity. Here we present an approach in which theoretically driven models of task response are used to define constraints based on which the final model is derived computationally using the actual data. Specifically, we developed 'autohrf' — a package for the 'R' programming language that allows for data-driven estimation of HRF models. The package uses genetic algorithms to efficiently search for models that fit the underlying data well. The package uses automated parameter search to find the onset and duration of task predictors which result in the highest fitness of the resulting GLM based on the fMRI signal under predefined restrictions. We evaluate the usefulness of the 'autohrf' package on publicly available datasets of task-related fMRI activity. Our results suggest that by using 'autohrf' users can find better task related brain activity models in a quick and efficient manner.

Maintained by Jure Demšar. Last updated 1 years ago.

0.5 match 2 stars 4.72 score 13 scripts