Showing 7 of total 7 results (show query)
bnaras
multiview:Cooperative Learning for Multi-View Analysis
Cooperative learning combines the usual squared error loss of predictions with an agreement penalty to encourage the predictions from different data views to agree. By varying the weight of the agreement penalty, we get a continuum of solutions that include the well-known early and late fusion approaches. Cooperative learning chooses the degree of agreement (or fusion) in an adaptive manner, using a validation set or cross-validation to estimate test set prediction error. In the setting of cooperative regularized linear regression, the method combines the lasso penalty with the agreement penalty (Ding, D., Li, S., Narasimhan, B., Tibshirani, R. (2021) <doi:10.1073/pnas.2202113119>).
Maintained by Balasubramanian Narasimhan. Last updated 2 years ago.
85.7 match 2.95 score 18 scriptsbioc
mistyR:Multiview Intercellular SpaTial modeling framework
mistyR is an implementation of the Multiview Intercellular SpaTialmodeling framework (MISTy). MISTy is an explainable machine learning framework for knowledge extraction and analysis of single-cell, highly multiplexed, spatially resolved data. MISTy facilitates an in-depth understanding of marker interactions by profiling the intra- and intercellular relationships. MISTy is a flexible framework able to process a custom number of views. Each of these views can describe a different spatial context, i.e., define a relationship among the observed expressions of the markers, such as intracellular regulation or paracrine regulation, but also, the views can also capture cell-type specific relationships, capture relations between functional footprints or focus on relations between different anatomical regions. Each MISTy view is considered as a potential source of variability in the measured marker expressions. Each MISTy view is then analyzed for its contribution to the total expression of each marker and is explained in terms of the interactions with other measurements that led to the observed contribution.
Maintained by Jovan Tanevski. Last updated 5 months ago.
softwarebiomedicalinformaticscellbiologysystemsbiologyregressiondecisiontreesinglecellspatialbioconductorbiologyintercellularmachine-learningmodularmolecular-biologymultiviewspatial-transcriptomics
14.5 match 51 stars 7.87 score 160 scriptssoftwareliteracy
rEDM:Empirical Dynamic Modeling ('EDM')
An implementation of 'EDM' algorithms based on research software developed for internal use at the Sugihara Lab ('UCSD/SIO'). The package is implemented with 'Rcpp' wrappers around the 'cppEDM' library. It implements the 'simplex' projection method from Sugihara & May (1990) <doi:10.1038/344734a0>, the 'S-map' algorithm from Sugihara (1994) <doi:10.1098/rsta.1994.0106>, convergent cross mapping described in Sugihara et al. (2012) <doi:10.1126/science.1227079>, and, 'multiview embedding' described in Ye & Sugihara (2016) <doi:10.1126/science.aag0863>.
Maintained by Joseph Park. Last updated 11 months ago.
7.2 match 2 stars 6.05 score 319 scripts 1 dependentsstscl
spEDM:Spatial Empirical Dynamic Modeling
Inferring causal associations in cross-sectional earth system data through empirical dynamic modeling (EDM), with extensions to convergent cross mapping from Sugihara et al. (2012) <doi:10.1126/science.1227079>, partial cross mapping as outlined in Leng et al. (2020) <doi:10.1038/s41467-020-16238-0>, and cross mapping cardinality as described in Tao et al. (2023)<doi:10.1016/j.fmre.2023.01.007>.
Maintained by Wenbo Lv. Last updated 18 hours ago.
causal-inferencecppempirical-dynamic-modelinggeoinformaticsgeospatial-causalityspatial-statisticsopenblascppopenmp
5.3 match 17 stars 6.11 score 2 scriptsbioc
FuseSOM:A Correlation Based Multiview Self Organizing Maps Clustering For IMC Datasets
A correlation-based multiview self-organizing map for the characterization of cell types in highly multiplexed in situ imaging cytometry assays (`FuseSOM`) is a tool for unsupervised clustering. `FuseSOM` is robust and achieves high accuracy by combining a `Self Organizing Map` architecture and a `Multiview` integration of correlation based metrics. This allows FuseSOM to cluster highly multiplexed in situ imaging cytometry assays.
Maintained by Elijah Willie. Last updated 5 months ago.
singlecellcellbasedassaysclusteringspatial
3.6 match 1 stars 4.71 score 17 scriptsbehnam-yousefi
ConsensusClustering:Consensus Clustering
Clustering, or cluster analysis, is a widely used technique in bioinformatics to identify groups of similar biological data points. Consensus clustering is an extension to clustering algorithms that aims to construct a robust result from those clustering features that are invariant under different sources of variation. For the reference, please cite the following paper: Yousefi, Melograna, et. al., (2023) <doi:10.3389/fmicb.2023.1170391>.
Maintained by Behnam Yousefi. Last updated 8 months ago.
9.6 match 1.30 score 3 scriptscyianor
mmpca:Integrative Analysis of Several Related Data Matrices
A generalization of principal component analysis for integrative analysis. The method finds principal components that describe single matrices or that are common to several matrices. The solutions are sparse. Rank of solutions is automatically selected using cross validation. The method is described in Kallus et al. (2019) <arXiv:1911.04927>.
Maintained by Felix Held. Last updated 2 months ago.
1.9 match 2 stars 3.00 score