Showing 62 of total 62 results (show query)

cran

drc:Analysis of Dose-Response Curves

Analysis of dose-response data is made available through a suite of flexible and versatile model fitting and after-fitting functions.

Maintained by Christian Ritz. Last updated 9 years ago.

15.8 match 8 stars 8.39 score 1.4k scripts 28 dependents

ropensci

stplanr:Sustainable Transport Planning

Tools for transport planning with an emphasis on spatial transport data and non-motorized modes. The package was originally developed to support the 'Propensity to Cycle Tool', a publicly available strategic cycle network planning tool (Lovelace et al. 2017) <doi:10.5198/jtlu.2016.862>, but has since been extended to support public transport routing and accessibility analysis (Moreno-Monroy et al. 2017) <doi:10.1016/j.jtrangeo.2017.08.012> and routing with locally hosted routing engines such as 'OSRM' (Lowans et al. 2023) <doi:10.1016/j.enconman.2023.117337>. The main functions are for creating and manipulating geographic "desire lines" from origin-destination (OD) data (building on the 'od' package); calculating routes on the transport network locally and via interfaces to routing services such as <https://cyclestreets.net/> (Desjardins et al. 2021) <doi:10.1007/s11116-021-10197-1>; and calculating route segment attributes such as bearing. The package implements the 'travel flow aggregration' method described in Morgan and Lovelace (2020) <doi:10.1177/2399808320942779> and the 'OD jittering' method described in Lovelace et al. (2022) <doi:10.32866/001c.33873>. Further information on the package's aim and scope can be found in the vignettes and in a paper in the R Journal (Lovelace and Ellison 2018) <doi:10.32614/RJ-2018-053>, and in a paper outlining the landscape of open source software for geographic methods in transport planning (Lovelace, 2021) <doi:10.1007/s10109-020-00342-2>.

Maintained by Robin Lovelace. Last updated 7 months ago.

cyclecyclingdesire-linesorigin-destinationpeer-reviewedpubic-transportroute-networkroutesroutingspatialtransporttransport-planningtransportationwalking

5.2 match 427 stars 12.31 score 684 scripts 3 dependents

fauvernierma

survPen:Multidimensional Penalized Splines for (Excess) Hazard Models, Relative Mortality Ratio Models and Marginal Intensity Models

Fits (excess) hazard, relative mortality ratio or marginal intensity models with multidimensional penalized splines allowing for time-dependent effects, non-linear effects and interactions between several continuous covariates. In survival and net survival analysis, in addition to modelling the effect of time (via the baseline hazard), one has often to deal with several continuous covariates and model their functional forms, their time-dependent effects, and their interactions. Model specification becomes therefore a complex problem and penalized regression splines represent an appealing solution to that problem as splines offer the required flexibility while penalization limits overfitting issues. Current implementations of penalized survival models can be slow or unstable and sometimes lack some key features like taking into account expected mortality to provide net survival and excess hazard estimates. In contrast, survPen provides an automated, fast, and stable implementation (thanks to explicit calculation of the derivatives of the likelihood) and offers a unified framework for multidimensional penalized hazard and excess hazard models. Later versions (>2.0.0) include penalized models for relative mortality ratio, and marginal intensity in recurrent event setting. survPen may be of interest to those who 1) analyse any kind of time-to-event data: mortality, disease relapse, machinery breakdown, unemployment, etc 2) wish to describe the associated hazard and to understand which predictors impact its dynamics, 3) wish to model the relative mortality ratio between a cohort and a reference population, 4) wish to describe the marginal intensity for recurrent event data. See Fauvernier et al. (2019a) <doi:10.21105/joss.01434> for an overview of the package and Fauvernier et al. (2019b) <doi:10.1111/rssc.12368> for the method.

Maintained by Mathieu Fauvernier. Last updated 3 months ago.

cpp

5.6 match 12 stars 6.82 score 85 scripts 1 dependents

angelospsy

condir:Computation of P Values and Bayes Factors for Conditioning Data

Set of functions for the easy analyses of conditioning data.

Maintained by Angelos-Miltiadis Krypotos. Last updated 1 years ago.

3.8 match 2 stars 4.34 score 11 scripts

fawda123

rStrava:Access the 'Strava' API

Functions to access data from the 'Strava v3 API' <https://developers.strava.com/>.

Maintained by Marcus W. Beck. Last updated 5 months ago.

1.8 match 155 stars 7.15 score 57 scripts

poissonconsulting

pgfeatureserv:Client for pg_featureserv RESTful web service

Client for pg_featureserv, a RESTful geospatial feature server for PostGIS.

Maintained by Seb Dalgarno. Last updated 5 months ago.

2.0 match 1 stars 3.08 score 2 scripts 2 dependents

nenuial

ggeo:Themes and Helpers for ggplot2

This package provides helper functions for ggplot graphs and maps.

Maintained by Pascal Burkhard. Last updated 22 days ago.

1.8 match 1 stars 3.52 score 2 dependents