Showing 200 of total 3580 results (show query)

trinker

wakefield:Generate Random Data Sets

Generates random data sets including: data.frames, lists, and vectors.

Maintained by Tyler Rinker. Last updated 5 years ago.

data-generationwakefield

118.8 match 256 stars 7.13 score 209 scripts

declaredesign

randomizr:Easy-to-Use Tools for Common Forms of Random Assignment and Sampling

Generates random assignments for common experimental designs and random samples for common sampling designs.

Maintained by Alexander Coppock. Last updated 1 months ago.

63.1 match 37 stars 9.90 score 396 scripts 13 dependents

mlr-org

mlr3extralearners:Extra Learners For mlr3

Extra learners for use in mlr3.

Maintained by Sebastian Fischer. Last updated 4 months ago.

machine-learningmlr3

29.0 match 94 stars 9.16 score 474 scripts

braverock

PortfolioAnalytics:Portfolio Analysis, Including Numerical Methods for Optimization of Portfolios

Portfolio optimization and analysis routines and graphics.

Maintained by Brian G. Peterson. Last updated 3 months ago.

16.7 match 81 stars 11.49 score 626 scripts 2 dependents

insightsengineering

teal.data:Data Model for 'teal' Applications

Provides a 'teal_data' class as a unified data model for 'teal' applications focusing on reproducibility and relational data.

Maintained by Dawid Kaledkowski. Last updated 2 months ago.

data-modelnest

18.3 match 11 stars 9.93 score 44 scripts 8 dependents

alanarnholt

BSDA:Basic Statistics and Data Analysis

Data sets for book "Basic Statistics and Data Analysis" by Larry J. Kitchens.

Maintained by Alan T. Arnholt. Last updated 2 years ago.

18.8 match 7 stars 9.11 score 1.3k scripts 6 dependents

reside-ic

ids:Generate Random Identifiers

Generate random or human readable and pronounceable identifiers.

Maintained by Rich FitzJohn. Last updated 3 years ago.

12.0 match 94 stars 13.27 score 175 scripts 165 dependents

cran

nlme:Linear and Nonlinear Mixed Effects Models

Fit and compare Gaussian linear and nonlinear mixed-effects models.

Maintained by R Core Team. Last updated 2 months ago.

fortran

11.7 match 6 stars 13.00 score 13k scripts 8.7k dependents

neurodata

lolR:Linear Optimal Low-Rank Projection

Supervised learning techniques designed for the situation when the dimensionality exceeds the sample size have a tendency to overfit as the dimensionality of the data increases. To remedy this High dimensionality; low sample size (HDLSS) situation, we attempt to learn a lower-dimensional representation of the data before learning a classifier. That is, we project the data to a situation where the dimensionality is more manageable, and then are able to better apply standard classification or clustering techniques since we will have fewer dimensions to overfit. A number of previous works have focused on how to strategically reduce dimensionality in the unsupervised case, yet in the supervised HDLSS regime, few works have attempted to devise dimensionality reduction techniques that leverage the labels associated with the data. In this package and the associated manuscript Vogelstein et al. (2017) <arXiv:1709.01233>, we provide several methods for feature extraction, some utilizing labels and some not, along with easily extensible utilities to simplify cross-validative efforts to identify the best feature extraction method. Additionally, we include a series of adaptable benchmark simulations to serve as a standard for future investigative efforts into supervised HDLSS. Finally, we produce a comprehensive comparison of the included algorithms across a range of benchmark simulations and real data applications.

Maintained by Eric Bridgeford. Last updated 4 years ago.

20.0 match 20 stars 7.28 score 80 scripts

briencj

asremlPlus:Augments 'ASReml-R' in Fitting Mixed Models and Packages Generally in Exploring Prediction Differences

Assists in automating the selection of terms to include in mixed models when 'asreml' is used to fit the models. Procedures are available for choosing models that conform to the hierarchy or marginality principle, for fitting and choosing between two-dimensional spatial models using correlation, natural cubic smoothing spline and P-spline models. A history of the fitting of a sequence of models is kept in a data frame. Also used to compute functions and contrasts of, to investigate differences between and to plot predictions obtained using any model fitting function. The content falls into the following natural groupings: (i) Data, (ii) Model modification functions, (iii) Model selection and description functions, (iv) Model diagnostics and simulation functions, (v) Prediction production and presentation functions, (vi) Response transformation functions, (vii) Object manipulation functions, and (viii) Miscellaneous functions (for further details see 'asremlPlus-package' in help). The 'asreml' package provides a computationally efficient algorithm for fitting a wide range of linear mixed models using Residual Maximum Likelihood. It is a commercial package and a license for it can be purchased from 'VSNi' <https://vsni.co.uk/> as 'asreml-R', who will supply a zip file for local installation/updating (see <https://asreml.kb.vsni.co.uk/>). It is not needed for functions that are methods for 'alldiffs' and 'data.frame' objects. The package 'asremPlus' can also be installed from <http://chris.brien.name/rpackages/>.

Maintained by Chris Brien. Last updated 26 days ago.

asremlmixed-models

13.2 match 19 stars 9.34 score 200 scripts

jakubnowicki

fixtuRes:Mock Data Generator

Generate mock data in R using YAML configuration.

Maintained by Jakub Nowicki. Last updated 3 years ago.

fixturesmock-datamock-data-generatortest-data-generatoryaml-configuration

24.7 match 16 stars 4.98 score 12 scripts

predictiveecology

NetLogoR:Build and Run Spatially Explicit Agent-Based Models

Build and run spatially explicit agent-based models using only the R platform. 'NetLogoR' follows the same framework as the 'NetLogo' software (Wilensky (1999) <http://ccl.northwestern.edu/netlogo/>) and is a translation in R of the structure and functions of 'NetLogo'. 'NetLogoR' provides new R classes to define model agents and functions to implement spatially explicit agent-based models in the R environment. This package allows benefiting of the fast and easy coding phase from the highly developed 'NetLogo' framework, coupled with the versatility, power and massive resources of the R software. Examples of two models from the NetLogo software repository (Ants <http://ccl.northwestern.edu/netlogo/models/Ants>) and Wolf-Sheep-Predation (<http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation>), and a third, Butterfly, from Railsback and Grimm (2012) <https://www.railsback-grimm-abm-book.com/>, all written using 'NetLogoR' are available. The 'NetLogo' code of the original version of these models is provided alongside. A programming guide inspired from the 'NetLogo' Programming Guide (<https://ccl.northwestern.edu/netlogo/docs/programming.html>) and a dictionary of 'NetLogo' primitives (<https://ccl.northwestern.edu/netlogo/docs/dictionary.html>) equivalences are also available. NOTE: To increment 'time', these functions can use a for loop or can be integrated with a discrete event simulator, such as 'SpaDES' (<https://cran.r-project.org/package=SpaDES>). The suggested package 'fastshp' can be installed with 'install.packages("fastshp", repos = ("<https://rforge.net>"), type = "source")'.

Maintained by Eliot J B McIntire. Last updated 4 months ago.

16.3 match 38 stars 6.94 score 19 scripts

vmoprojs

GeoModels:Procedures for Gaussian and Non Gaussian Geostatistical (Large) Data Analysis

Functions for Gaussian and Non Gaussian (bivariate) spatial and spatio-temporal data analysis are provided for a) (fast) simulation of random fields, b) inference for random fields using standard likelihood and a likelihood approximation method called weighted composite likelihood based on pairs and b) prediction using (local) best linear unbiased prediction. Weighted composite likelihood can be very efficient for estimating massive datasets. Both regression and spatial (temporal) dependence analysis can be jointly performed. Flexible covariance models for spatial and spatial-temporal data on Euclidean domains and spheres are provided. There are also many useful functions for plotting and performing diagnostic analysis. Different non Gaussian random fields can be considered in the analysis. Among them, random fields with marginal distributions such as Skew-Gaussian, Student-t, Tukey-h, Sin-Arcsin, Two-piece, Weibull, Gamma, Log-Gaussian, Binomial, Negative Binomial and Poisson. See the URL for the papers associated with this package, as for instance, Bevilacqua and Gaetan (2015) <doi:10.1007/s11222-014-9460-6>, Bevilacqua et al. (2016) <doi:10.1007/s13253-016-0256-3>, Vallejos et al. (2020) <doi:10.1007/978-3-030-56681-4>, Bevilacqua et. al (2020) <doi:10.1002/env.2632>, Bevilacqua et. al (2021) <doi:10.1111/sjos.12447>, Bevilacqua et al. (2022) <doi:10.1016/j.jmva.2022.104949>, Morales-Navarrete et al. (2023) <doi:10.1080/01621459.2022.2140053>, and a large class of examples and tutorials.

Maintained by Moreno Bevilacqua. Last updated 2 months ago.

fortranopenblasglibc

23.4 match 3 stars 4.17 score 83 scripts

r-forge

RandVar:Implementation of Random Variables

Implements random variables by means of S4 classes and methods.

Maintained by Matthias Kohl. Last updated 2 months ago.

16.0 match 6.03 score 43 scripts 7 dependents

claudioagostinelli

CircStats:Circular Statistics, from "Topics in Circular Statistics" (2001)

Circular Statistics, from "Topics in Circular Statistics" (2001) S. Rao Jammalamadaka and A. SenGupta, World Scientific.

Maintained by Claudio Agostinelli. Last updated 7 years ago.

14.5 match 2 stars 6.60 score 261 scripts 36 dependents

r-forge

surveillance:Temporal and Spatio-Temporal Modeling and Monitoring of Epidemic Phenomena

Statistical methods for the modeling and monitoring of time series of counts, proportions and categorical data, as well as for the modeling of continuous-time point processes of epidemic phenomena. The monitoring methods focus on aberration detection in count data time series from public health surveillance of communicable diseases, but applications could just as well originate from environmetrics, reliability engineering, econometrics, or social sciences. The package implements many typical outbreak detection procedures such as the (improved) Farrington algorithm, or the negative binomial GLR-CUSUM method of Hoehle and Paul (2008) <doi:10.1016/j.csda.2008.02.015>. A novel CUSUM approach combining logistic and multinomial logistic modeling is also included. The package contains several real-world data sets, the ability to simulate outbreak data, and to visualize the results of the monitoring in a temporal, spatial or spatio-temporal fashion. A recent overview of the available monitoring procedures is given by Salmon et al. (2016) <doi:10.18637/jss.v070.i10>. For the retrospective analysis of epidemic spread, the package provides three endemic-epidemic modeling frameworks with tools for visualization, likelihood inference, and simulation. hhh4() estimates models for (multivariate) count time series following Paul and Held (2011) <doi:10.1002/sim.4177> and Meyer and Held (2014) <doi:10.1214/14-AOAS743>. twinSIR() models the susceptible-infectious-recovered (SIR) event history of a fixed population, e.g, epidemics across farms or networks, as a multivariate point process as proposed by Hoehle (2009) <doi:10.1002/bimj.200900050>. twinstim() estimates self-exciting point process models for a spatio-temporal point pattern of infective events, e.g., time-stamped geo-referenced surveillance data, as proposed by Meyer et al. (2012) <doi:10.1111/j.1541-0420.2011.01684.x>. A recent overview of the implemented space-time modeling frameworks for epidemic phenomena is given by Meyer et al. (2017) <doi:10.18637/jss.v077.i11>.

Maintained by Sebastian Meyer. Last updated 17 hours ago.

cpp

8.7 match 2 stars 10.68 score 446 scripts 3 dependents

yayayaoyaoyao

RARtrials:Response-Adaptive Randomization in Clinical Trials

Some response-adaptive randomization methods commonly found in literature are included in this package. These methods include the randomized play-the-winner rule for binary endpoint (Wei and Durham (1978) <doi:10.2307/2286290>), the doubly adaptive biased coin design with minimal variance strategy for binary endpoint (Atkinson and Biswas (2013) <doi:10.1201/b16101>, Rosenberger and Lachin (2015) <doi:10.1002/9781118742112>) and maximal power strategy targeting Neyman allocation for binary endpoint (Tymofyeyev, Rosenberger, and Hu (2007) <doi:10.1198/016214506000000906>) and RSIHR allocation with each letter representing the first character of the names of the individuals who first proposed this rule (Youngsook and Hu (2010) <doi:10.1198/sbr.2009.0056>, Bello and Sabo (2016) <doi:10.1080/00949655.2015.1114116>), A-optimal Allocation for continuous endpoint (Sverdlov and Rosenberger (2013) <doi:10.1080/15598608.2013.783726>), Aa-optimal Allocation for continuous endpoint (Sverdlov and Rosenberger (2013) <doi:10.1080/15598608.2013.783726>), generalized RSIHR allocation for continuous endpoint (Atkinson and Biswas (2013) <doi:10.1201/b16101>), Bayesian response-adaptive randomization with a control group using the Thall \& Wathen method for binary and continuous endpoints (Thall and Wathen (2007) <doi:10.1016/j.ejca.2007.01.006>) and the forward-looking Gittins index rule for binary and continuous endpoints (Villar, Wason, and Bowden (2015) <doi:10.1111/biom.12337>, Williamson and Villar (2019) <doi:10.1111/biom.13119>).

Maintained by Chuyao Xu. Last updated 2 months ago.

19.5 match 4.65 score

bioc

graph:graph: A package to handle graph data structures

A package that implements some simple graph handling capabilities.

Maintained by Bioconductor Package Maintainer. Last updated 9 days ago.

graphandnetwork

7.5 match 11.78 score 764 scripts 342 dependents

insightsengineering

osprey:R Package to Create TLGs

Community effort to collect TLG code and create a catalogue.

Maintained by Nina Qi. Last updated 19 days ago.

cataloggraphslistingsnesttables

16.3 match 4 stars 5.41 score 1 dependents

mjlajeunesse

metagear:Comprehensive Research Synthesis Tools for Systematic Reviews and Meta-Analysis

Functionalities for facilitating systematic reviews, data extractions, and meta-analyses. It includes a GUI (graphical user interface) to help screen the abstracts and titles of bibliographic data; tools to assign screening effort across multiple collaborators/reviewers and to assess inter- reviewer reliability; tools to help automate the download and retrieval of journal PDF articles from online databases; figure and image extractions from PDFs; web scraping of citations; automated and manual data extraction from scatter-plot and bar-plot images; PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagrams; simple imputation tools to fill gaps in incomplete or missing study parameters; generation of random effects sizes for Hedges' d, log response ratio, odds ratio, and correlation coefficients for Monte Carlo experiments; covariance equations for modelling dependencies among multiple effect sizes (e.g., effect sizes with a common control); and finally summaries that replicate analyses and outputs from widely used but no longer updated meta-analysis software (i.e., metawin). Funding for this package was supported by National Science Foundation (NSF) grants DBI-1262545 and DEB-1451031. CITE: Lajeunesse, M.J. (2016) Facilitating systematic reviews, data extraction and meta-analysis with the metagear package for R. Methods in Ecology and Evolution 7, 323-330 <doi:10.1111/2041-210X.12472>.

Maintained by Marc J. Lajeunesse. Last updated 4 years ago.

12.8 match 14 stars 6.71 score 91 scripts

cran

Directional:A Collection of Functions for Directional Data Analysis

A collection of functions for directional data (including massive data, with millions of observations) analysis. Hypothesis testing, discriminant and regression analysis, MLE of distributions and more are included. The standard textbook for such data is the "Directional Statistics" by Mardia, K. V. and Jupp, P. E. (2000). Other references include: a) Paine J.P., Preston S.P., Tsagris M. and Wood A.T.A. (2018). "An elliptically symmetric angular Gaussian distribution". Statistics and Computing 28(3): 689-697. <doi:10.1007/s11222-017-9756-4>. b) Tsagris M. and Alenazi A. (2019). "Comparison of discriminant analysis methods on the sphere". Communications in Statistics: Case Studies, Data Analysis and Applications 5(4):467--491. <doi:10.1080/23737484.2019.1684854>. c) Paine J.P., Preston S.P., Tsagris M. and Wood A.T.A. (2020). "Spherical regression models with general covariates and anisotropic errors". Statistics and Computing 30(1): 153--165. <doi:10.1007/s11222-019-09872-2>. d) Tsagris M. and Alenazi A. (2024). "An investigation of hypothesis testing procedures for circular and spherical mean vectors". Communications in Statistics-Simulation and Computation, 53(3): 1387--1408. <doi:10.1080/03610918.2022.2045499>. e) Yu Z. and Huang X. (2024). A new parameterization for elliptically symmetric angular Gaussian distributions of arbitrary dimension. Electronic Journal of Statistics, 18(1): 301--334. <doi:10.1214/23-EJS2210>. f) Tsagris M. and Alzeley O. (2024). "Circular and spherical projected Cauchy distributions: A Novel Framework for Circular and Directional Data Modeling". Australian & New Zealand Journal of Statistics (Accepted for publication). <doi:10.1111/anzs.12434>. g) Tsagris M., Papastamoulis P. and Kato S. (2024). "Directional data analysis: spherical Cauchy or Poisson kernel-based distribution". Statistics and Computing (Accepted for publication). <doi:10.48550/arXiv.2409.03292>.

Maintained by Michail Tsagris. Last updated 1 months ago.

19.4 match 3 stars 4.06 score 3 dependents