Showing 200 of total 270 results (show query)

fauvernierma

survPen:Multidimensional Penalized Splines for (Excess) Hazard Models, Relative Mortality Ratio Models and Marginal Intensity Models

Fits (excess) hazard, relative mortality ratio or marginal intensity models with multidimensional penalized splines allowing for time-dependent effects, non-linear effects and interactions between several continuous covariates. In survival and net survival analysis, in addition to modelling the effect of time (via the baseline hazard), one has often to deal with several continuous covariates and model their functional forms, their time-dependent effects, and their interactions. Model specification becomes therefore a complex problem and penalized regression splines represent an appealing solution to that problem as splines offer the required flexibility while penalization limits overfitting issues. Current implementations of penalized survival models can be slow or unstable and sometimes lack some key features like taking into account expected mortality to provide net survival and excess hazard estimates. In contrast, survPen provides an automated, fast, and stable implementation (thanks to explicit calculation of the derivatives of the likelihood) and offers a unified framework for multidimensional penalized hazard and excess hazard models. Later versions (>2.0.0) include penalized models for relative mortality ratio, and marginal intensity in recurrent event setting. survPen may be of interest to those who 1) analyse any kind of time-to-event data: mortality, disease relapse, machinery breakdown, unemployment, etc 2) wish to describe the associated hazard and to understand which predictors impact its dynamics, 3) wish to model the relative mortality ratio between a cohort and a reference population, 4) wish to describe the marginal intensity for recurrent event data. See Fauvernier et al. (2019a) <doi:10.21105/joss.01434> for an overview of the package and Fauvernier et al. (2019b) <doi:10.1111/rssc.12368> for the method.

Maintained by Mathieu Fauvernier. Last updated 4 months ago.

cpp

6.8 match 12 stars 6.82 score 85 scripts 1 dependents

antoinelucas64

amap:Another Multidimensional Analysis Package

Tools for Clustering and Principal Component Analysis (With robust methods, and parallelized functions).

Maintained by Antoine Lucas. Last updated 5 months ago.

fortrancpp

3.1 match 7.66 score 460 scripts 26 dependents

yng-me

mpindex:Multidimensional Poverty Index (MPI)

A set of easy-to-use functions for computing the Multidimensional Poverty Index (MPI).

Maintained by Bhas Abdulsamad. Last updated 1 years ago.

5.5 match 4 stars 4.30 score 6 scripts

jdonaldson

tsne:T-Distributed Stochastic Neighbor Embedding for R (t-SNE)

A "pure R" implementation of the t-SNE algorithm.

Maintained by Justin Donaldson. Last updated 6 years ago.

1.9 match 58 stars 9.35 score 656 scripts 13 dependents

r-forge

smacofx:Flexible Multidimensional Scaling and 'smacof' Extensions

Flexible multidimensional scaling (MDS) methods and extensions to the package 'smacof'. This package contains various functions, wrappers, methods and classes for fitting, plotting and displaying a large number of different flexible MDS models. These are: Torgerson scaling (Torgerson, 1958, ISBN:978-0471879459) with powers, Sammon mapping (Sammon, 1969, <doi:10.1109/T-C.1969.222678>) with ratio and interval optimal scaling, Multiscale MDS (Ramsay, 1977, <doi:10.1007/BF02294052>) with ratio and interval optimal scaling, s-stress MDS (ALSCAL; Takane, Young & De Leeuw, 1977, <doi:10.1007/BF02293745>) with ratio and interval optimal scaling, elastic scaling (McGee, 1966, <doi:10.1111/j.2044-8317.1966.tb00367.x>) with ratio and interval optimal scaling, r-stress MDS (De Leeuw, Groenen & Mair, 2016, <https://rpubs.com/deleeuw/142619>) with ratio, interval, splines and nonmetric optimal scaling, power-stress MDS (POST-MDS; Buja & Swayne, 2002 <doi:10.1007/s00357-001-0031-0>) with ratio and interval optimal scaling, restricted power-stress (Rusch, Mair & Hornik, 2021, <doi:10.1080/10618600.2020.1869027>) with ratio and interval optimal scaling, approximate power-stress with ratio optimal scaling (Rusch, Mair & Hornik, 2021, <doi:10.1080/10618600.2020.1869027>), Box-Cox MDS (Chen & Buja, 2013, <https://jmlr.org/papers/v14/chen13a.html>), local MDS (Chen & Buja, 2009, <doi:10.1198/jasa.2009.0111>), curvilinear component analysis (Demartines & Herault, 1997, <doi:10.1109/72.554199>), curvilinear distance analysis (Lee, Lendasse & Verleysen, 2004, <doi:10.1016/j.neucom.2004.01.007>), nonlinear MDS with optimal dissimilarity powers functions (De Leeuw, 2024, <https://github.com/deleeuw/smacofManual/blob/main/smacofPO/smacofPO.pdf>), sparsified (power) MDS and sparsified multidimensional (power) distance analysis (Rusch, 2024, <doi:10.57938/355bf835-ddb7-42f4-8b85-129799fc240e>). Some functions are suitably flexible to allow any other sensible combination of explicit power transformations for weights, distances and input proximities with implicit ratio, interval, splines or nonmetric optimal scaling of the input proximities. Most functions use a Majorization-Minimization algorithm. Currently the methods are only available for one-mode data (symmetric dissimilarity matrices).

Maintained by Thomas Rusch. Last updated 2 months ago.

3.8 match 1 stars 3.89 score 2 dependents

whateverliu

FLSSS:Mining Rigs for Problems in the Subset Sum Family

Specialized solvers for combinatorial optimization problems in the Subset Sum family. The solvers differ from the mainstream in the options of (i) restricting subset size, (ii) bounding subset elements, (iii) mining real-value multisets with predefined subset sum errors, (iv) finding one or more subsets in limited time. A novel algorithm for mining the one-dimensional Subset Sum induced algorithms for the multi-Subset Sum and the multidimensional Subset Sum. The multi-threaded framework for the latter offers exact algorithms to the multidimensional Knapsack and the Generalized Assignment problems. Historical updates include (a) renewed implementation of the multi-Subset Sum, multidimensional Knapsack and Generalized Assignment solvers; (b) availability of bounding solution space in the multidimensional Subset Sum; (c) fundamental data structure and architectural changes for enhanced cache locality and better chance of SIMD vectorization; (d) option of mapping floating-point instance to compressed 64-bit integer instance with user-controlled precision loss, which could yield substantial speedup due to the dimension reduction and efficient compressed integer arithmetic via bit-manipulations; (e) distributed computing infrastructure for multidimensional subset sum; (f) arbitrary-precision zero-margin-of-error multidimensional Subset Sum accelerated by a simplified Bloom filter. The package contains a copy of xxHash from <https://github.com/Cyan4973/xxHash>. Package vignette (<doi:10.48550/arXiv.1612.04484>) detailed a few historical updates. Functions prefixed with 'aux' (auxiliary) are independent implementations of published algorithms for solving optimization problems less relevant to Subset Sum.

Maintained by Charlie Wusuo Liu. Last updated 2 months ago.

gmpcpp

7.9 match 1 stars 1.78 score 20 scripts

lcbc-uio

questionnaires:Package with functions to calculate components and sums for LCBC questionnaires

Creates summaries and factorials of answers to questionnaires.

Maintained by Athanasia Mo Mowinckel. Last updated 2 years ago.

2.9 match 3 stars 4.63 score 13 scripts

orenbenkiki

chameleon:Automatic Colors for Multi-Dimensional Data

Assign distinct colors to arbitrary multi-dimensional data, considering its structure.

Maintained by Oren Ben-Kiki. Last updated 2 years ago.

3.3 match 3.00 score 20 scripts

henrikbengtsson

sfit:Multidimensional Simplex Fitting

Methods for robustly fitting a K-dimensional simplex in M dimensions.

Maintained by Henrik Bengtsson. Last updated 2 years ago.

cconemodelsimplex

3.3 match 1 stars 1.70 score

dnychka

LatticeKrig:Multi-Resolution Kriging Based on Markov Random Fields

Methods for the interpolation of large spatial datasets. This package uses a basis function approach that provides a surface fitting method that can approximate standard spatial data models. Using a large number of basis functions allows for estimates that can come close to interpolating the observations (a spatial model with a small nugget variance.) Moreover, the covariance model for this method can approximate the Matern covariance family but also allows for a multi-resolution model and supports efficient computation of the profile likelihood for estimating covariance parameters. This is accomplished through compactly supported basis functions and a Markov random field model for the basis coefficients. These features lead to sparse matrices for the computations and this package makes of the R spam package for sparse linear algebra. An extension of this version over previous ones ( < 5.4 ) is the support for different geometries besides a rectangular domain. The Markov random field approach combined with a basis function representation makes the implementation of different geometries simple where only a few specific R functions need to be added with most of the computation and evaluation done by generic routines that have been tuned to be efficient. One benefit of this package's model/approach is the facility to do unconditional and conditional simulation of the field for large numbers of arbitrary points. There is also the flexibility for estimating non-stationary covariances and also the case when the observations are a linear combination (e.g. an integral) of the spatial process. Included are generic methods for prediction, standard errors for prediction, plotting of the estimated surface and conditional and unconditional simulation. See the 'LatticeKrigRPackage' GitHub repository for a vignette of this package. Development of this package was supported in part by the National Science Foundation Grant 1417857 and the National Center for Atmospheric Research.

Maintained by Douglas Nychka. Last updated 5 months ago.

fortran

1.7 match 2.89 score 130 scripts 1 dependents

r-forge

stops:Structure Optimized Proximity Scaling

Methods that use flexible variants of multidimensional scaling (MDS) which incorporate parametric nonlinear distance transformations and trade-off the goodness-of-fit fit with structure considerations to find optimal hyperparameters, also known as structure optimized proximity scaling (STOPS) (Rusch, Mair & Hornik, 2023,<doi:10.1007/s11222-022-10197-w>). The package contains various functions, wrappers, methods and classes for fitting, plotting and displaying different 1-way MDS models with ratio, interval, ordinal optimal scaling in a STOPS framework. These cover essentially the functionality of the package smacofx, including Torgerson (classical) scaling with power transformations of dissimilarities, SMACOF MDS with powers of dissimilarities, Sammon mapping with powers of dissimilarities, elastic scaling with powers of dissimilarities, spherical SMACOF with powers of dissimilarities, (ALSCAL) s-stress MDS with powers of dissimilarities, r-stress MDS, MDS with powers of dissimilarities and configuration distances, elastic scaling powers of dissimilarities and configuration distances, Sammon mapping powers of dissimilarities and configuration distances, power stress MDS (POST-MDS), approximate power stress, Box-Cox MDS, local MDS, Isomap, curvilinear component analysis (CLCA), curvilinear distance analysis (CLDA) and sparsified (power) multidimensional scaling and (power) multidimensional distance analysis (experimental models from smacofx influenced by CLCA). All of these models can also be fit by optimizing over hyperparameters based on goodness-of-fit fit only (i.e., no structure considerations). The package further contains functions for optimization, specifically the adaptive Luus-Jaakola algorithm and a wrapper for Bayesian optimization with treed Gaussian process with jumps to linear models, and functions for various c-structuredness indices.

Maintained by Thomas Rusch. Last updated 2 months ago.

openjdk

0.9 match 1 stars 4.48 score 23 scripts