Showing 200 of total 636 results (show query)

bioc

impute:impute: Imputation for microarray data

Imputation for microarray data (currently KNN only)

Maintained by Balasubramanian Narasimhan. Last updated 5 months ago.

microarrayfortran

60.3 match 9.04 score 952 scripts 131 dependents

tirgit

missCompare:Intuitive Missing Data Imputation Framework

Offers a convenient pipeline to test and compare various missing data imputation algorithms on simulated and real data. These include simpler methods, such as mean and median imputation and random replacement, but also include more sophisticated algorithms already implemented in popular R packages, such as 'mi', described by Su et al. (2011) <doi:10.18637/jss.v045.i02>; 'mice', described by van Buuren and Groothuis-Oudshoorn (2011) <doi:10.18637/jss.v045.i03>; 'missForest', described by Stekhoven and Buhlmann (2012) <doi:10.1093/bioinformatics/btr597>; 'missMDA', described by Josse and Husson (2016) <doi:10.18637/jss.v070.i01>; and 'pcaMethods', described by Stacklies et al. (2007) <doi:10.1093/bioinformatics/btm069>. The central assumption behind 'missCompare' is that structurally different datasets (e.g. larger datasets with a large number of correlated variables vs. smaller datasets with non correlated variables) will benefit differently from different missing data imputation algorithms. 'missCompare' takes measurements of your dataset and sets up a sandbox to try a curated list of standard and sophisticated missing data imputation algorithms and compares them assuming custom missingness patterns. 'missCompare' will also impute your real-life dataset for you after the selection of the best performing algorithm in the simulations. The package also provides various post-imputation diagnostics and visualizations to help you assess imputation performance.

Maintained by Tibor V. Varga. Last updated 4 years ago.

comparisoncomparison-benchmarksimputationimputation-algorithmimputation-methodsimputationskolmogorov-smirnovmissingmissing-datamissing-data-imputationmissing-status-checkmissing-valuesmissingnesspost-imputation-diagnosticsrmse

90.5 match 39 stars 5.89 score 40 scripts

mwheymans

psfmi:Prediction Model Pooling, Selection and Performance Evaluation Across Multiply Imputed Datasets

Pooling, backward and forward selection of linear, logistic and Cox regression models in multiply imputed datasets. Backward and forward selection can be done from the pooled model using Rubin's Rules (RR), the D1, D2, D3, D4 and the median p-values method. This is also possible for Mixed models. The models can contain continuous, dichotomous, categorical and restricted cubic spline predictors and interaction terms between all these type of predictors. The stability of the models can be evaluated using (cluster) bootstrapping. The package further contains functions to pool model performance measures as ROC/AUC, Reclassification, R-squared, scaled Brier score, H&L test and calibration plots for logistic regression models. Internal validation can be done across multiply imputed datasets with cross-validation or bootstrapping. The adjusted intercept after shrinkage of pooled regression coefficients can be obtained. Backward and forward selection as part of internal validation is possible. A function to externally validate logistic prediction models in multiple imputed datasets is available and a function to compare models. For Cox models a strata variable can be included. Eekhout (2017) <doi:10.1186/s12874-017-0404-7>. Wiel (2009) <doi:10.1093/biostatistics/kxp011>. Marshall (2009) <doi:10.1186/1471-2288-9-57>.

Maintained by Martijn Heymans. Last updated 2 years ago.

cox-regressionimputationimputed-datasetslogisticmultiple-imputationpoolpredictorregressionselectionsplinespline-predictors

53.5 match 10 stars 7.17 score 70 scripts

welch-lab

cytosignal:What the Package Does (One Line, Title Case)

What the package does (one paragraph).

Maintained by Jialin Liu. Last updated 5 days ago.

openblascpp

26.7 match 16 stars 5.95 score 6 scripts

haghish

mlim:Single and Multiple Imputation with Automated Machine Learning

Machine learning algorithms have been used for performing single missing data imputation and most recently, multiple imputations. However, this is the first attempt for using automated machine learning algorithms for performing both single and multiple imputation. Automated machine learning is a procedure for fine-tuning the model automatic, performing a random search for a model that results in less error, without overfitting the data. The main idea is to allow the model to set its own parameters for imputing each variable separately instead of setting fixed predefined parameters to impute all variables of the dataset. Using automated machine learning, the package fine-tunes an Elastic Net (default) or Gradient Boosting, Random Forest, Deep Learning, Extreme Gradient Boosting, or Stacked Ensemble machine learning model (from one or a combination of other supported algorithms) for imputing the missing observations. This procedure has been implemented for the first time by this package and is expected to outperform other packages for imputing missing data that do not fine-tune their models. The multiple imputation is implemented via bootstrapping without letting the duplicated observations to harm the cross-validation procedure, which is the way imputed variables are evaluated. Most notably, the package implements automated procedure for handling imputing imbalanced data (class rarity problem), which happens when a factor variable has a level that is far more prevalent than the other(s). This is known to result in biased predictions, hence, biased imputation of missing data. However, the autobalancing procedure ensures that instead of focusing on maximizing accuracy (classification error) in imputing factor variables, a fairer procedure and imputation method is practiced.

Maintained by E. F. Haghish. Last updated 8 months ago.

automatic-machine-learningautomlclassimbalancedata-scienceelastic-netextreme-gradient-boostinggbmglmgradient-boostinggradient-boosting-machineimputationimputation-algorithmimputation-methodsmachine-learningmissing-datamultipleimputationstack-ensemble

35.0 match 31 stars 4.49 score 7 scripts

tslumley

mitools:Tools for Multiple Imputation of Missing Data

Tools to perform analyses and combine results from multiple-imputation datasets.

Maintained by Thomas Lumley. Last updated 6 years ago.

11.9 match 1 stars 9.50 score 716 scripts 249 dependents

jacky11

imp4p:Imputation for Proteomics

Functions to analyse missing value mechanisms and to impute data sets in the context of bottom-up MS-based proteomics.

Maintained by Quentin Giai Gianetto. Last updated 4 years ago.

cpp

43.4 match 1 stars 2.00 score 33 scripts 1 dependents

bioc

mixOmics:Omics Data Integration Project

Multivariate methods are well suited to large omics data sets where the number of variables (e.g. genes, proteins, metabolites) is much larger than the number of samples (patients, cells, mice). They have the appealing properties of reducing the dimension of the data by using instrumental variables (components), which are defined as combinations of all variables. Those components are then used to produce useful graphical outputs that enable better understanding of the relationships and correlation structures between the different data sets that are integrated. mixOmics offers a wide range of multivariate methods for the exploration and integration of biological datasets with a particular focus on variable selection. The package proposes several sparse multivariate models we have developed to identify the key variables that are highly correlated, and/or explain the biological outcome of interest. The data that can be analysed with mixOmics may come from high throughput sequencing technologies, such as omics data (transcriptomics, metabolomics, proteomics, metagenomics etc) but also beyond the realm of omics (e.g. spectral imaging). The methods implemented in mixOmics can also handle missing values without having to delete entire rows with missing data. A non exhaustive list of methods include variants of generalised Canonical Correlation Analysis, sparse Partial Least Squares and sparse Discriminant Analysis. Recently we implemented integrative methods to combine multiple data sets: N-integration with variants of Generalised Canonical Correlation Analysis and P-integration with variants of multi-group Partial Least Squares.

Maintained by Eva Hamrud. Last updated 2 days ago.

immunooncologymicroarraysequencingmetabolomicsmetagenomicsproteomicsgenepredictionmultiplecomparisonclassificationregressionbioconductorgenomicsgenomics-datagenomics-visualizationmultivariate-analysismultivariate-statisticsomicsr-pkgr-project

4.0 match 182 stars 13.71 score 1.3k scripts 22 dependents

jgill22

hot.deck:Multiple Hot Deck Imputation

Performs multiple hot-deck imputation of categorical and continuous variables in a data frame.

Maintained by Jeff Gill. Last updated 4 years ago.

17.5 match 2.80 score 21 scripts 1 dependents

branchlab

metasnf:Meta Clustering with Similarity Network Fusion

Framework to facilitate patient subtyping with similarity network fusion and meta clustering. The similarity network fusion (SNF) algorithm was introduced by Wang et al. (2014) in <doi:10.1038/nmeth.2810>. SNF is a data integration approach that can transform high-dimensional and diverse data types into a single similarity network suitable for clustering with minimal loss of information from each initial data source. The meta clustering approach was introduced by Caruana et al. (2006) in <doi:10.1109/ICDM.2006.103>. Meta clustering involves generating a wide range of cluster solutions by adjusting clustering hyperparameters, then clustering the solutions themselves into a manageable number of qualitatively similar solutions, and finally characterizing representative solutions to find ones that are best for the user's specific context. This package provides a framework to easily transform multi-modal data into a wide range of similarity network fusion-derived cluster solutions as well as to visualize, characterize, and validate those solutions. Core package functionality includes easy customization of distance metrics, clustering algorithms, and SNF hyperparameters to generate diverse clustering solutions; calculation and plotting of associations between features, between patients, and between cluster solutions; and standard cluster validation approaches including resampled measures of cluster stability, standard metrics of cluster quality, and label propagation to evaluate generalizability in unseen data. Associated vignettes guide the user through using the package to identify patient subtypes while adhering to best practices for unsupervised learning.

Maintained by Prashanth S Velayudhan. Last updated 3 days ago.

bioinformaticsclusteringmetaclusteringsnf

5.0 match 8 stars 8.21 score 30 scripts

bioc

RNAseqCovarImpute:Impute Covariate Data in RNA Sequencing Studies

The RNAseqCovarImpute package makes linear model analysis for RNA sequencing read counts compatible with multiple imputation (MI) of missing covariates. A major problem with implementing MI in RNA sequencing studies is that the outcome data must be included in the imputation prediction models to avoid bias. This is difficult in omics studies with high-dimensional data. The first method we developed in the RNAseqCovarImpute package surmounts the problem of high-dimensional outcome data by binning genes into smaller groups to analyze pseudo-independently. This method implements covariate MI in gene expression studies by 1) randomly binning genes into smaller groups, 2) creating M imputed datasets separately within each bin, where the imputation predictor matrix includes all covariates and the log counts per million (CPM) for the genes within each bin, 3) estimating gene expression changes using `limma::voom` followed by `limma::lmFit` functions, separately on each M imputed dataset within each gene bin, 4) un-binning the gene sets and stacking the M sets of model results before applying the `limma::squeezeVar` function to apply a variance shrinking Bayesian procedure to each M set of model results, 5) pooling the results with Rubins’ rules to produce combined coefficients, standard errors, and P-values, and 6) adjusting P-values for multiplicity to account for false discovery rate (FDR). A faster method uses principal component analysis (PCA) to avoid binning genes while still retaining outcome information in the MI models. Binning genes into smaller groups requires that the MI and limma-voom analysis is run many times (typically hundreds). The more computationally efficient MI PCA method implements covariate MI in gene expression studies by 1) performing PCA on the log CPM values for all genes using the Bioconductor `PCAtools` package, 2) creating M imputed datasets where the imputation predictor matrix includes all covariates and the optimum number of PCs to retain (e.g., based on Horn’s parallel analysis or the number of PCs that account for >80% explained variation), 3) conducting the standard limma-voom pipeline with the `voom` followed by `lmFit` followed by `eBayes` functions on each M imputed dataset, 4) pooling the results with Rubins’ rules to produce combined coefficients, standard errors, and P-values, and 5) adjusting P-values for multiplicity to account for false discovery rate (FDR).

Maintained by Brennan Baker. Last updated 5 months ago.

rnaseqgeneexpressiondifferentialexpressionsequencing

9.0 match 1 stars 4.48 score 6 scripts

paulkinyanjui01

CondMVT:Conditional Multivariate t Distribution

The packages helps sample from the conditional multivariate t distribution.

Maintained by Paul Kimani Kinyanjui. Last updated 3 years ago.

13.3 match 2.70 score

wraff

wrProteo:Proteomics Data Analysis Functions

Data analysis of proteomics experiments by mass spectrometry is supported by this collection of functions mostly dedicated to the analysis of (bottom-up) quantitative (XIC) data. Fasta-formatted proteomes (eg from UniProt Consortium <doi:10.1093/nar/gky1049>) can be read with automatic parsing and multiple annotation types (like species origin, abbreviated gene names, etc) extracted. Initial results from multiple software for protein (and peptide) quantitation can be imported (to a common format): MaxQuant (Tyanova et al 2016 <doi:10.1038/nprot.2016.136>), Dia-NN (Demichev et al 2020 <doi:10.1038/s41592-019-0638-x>), Fragpipe (da Veiga et al 2020 <doi:10.1038/s41592-020-0912-y>), ionbot (Degroeve et al 2021 <doi:10.1101/2021.07.02.450686>), MassChroq (Valot et al 2011 <doi:10.1002/pmic.201100120>), OpenMS (Strauss et al 2021 <doi:10.1038/nmeth.3959>), ProteomeDiscoverer (Orsburn 2021 <doi:10.3390/proteomes9010015>), Proline (Bouyssie et al 2020 <doi:10.1093/bioinformatics/btaa118>), AlphaPept (preprint Strauss et al <doi:10.1101/2021.07.23.453379>) and Wombat-P (Bouyssie et al 2023 <doi:10.1021/acs.jproteome.3c00636>. Meta-data provided by initial analysis software and/or in sdrf format can be integrated to the analysis. Quantitative proteomics measurements frequently contain multiple NA values, due to physical absence of given peptides in some samples, limitations in sensitivity or other reasons. Help is provided to inspect the data graphically to investigate the nature of NA-values via their respective replicate measurements and to help/confirm the choice of NA-replacement algorithms. Meta-data in sdrf-format (Perez-Riverol et al 2020 <doi:10.1021/acs.jproteome.0c00376>) or similar tabular formats can be imported and included. Missing values can be inspected and imputed based on the concept of NA-neighbours or other methods. Dedicated filtering and statistical testing using the framework of package 'limma' <doi:10.18129/B9.bioc.limma> can be run, enhanced by multiple rounds of NA-replacements to provide robustness towards rare stochastic events. Multi-species samples, as frequently used in benchmark-tests (eg Navarro et al 2016 <doi:10.1038/nbt.3685>, Ramus et al 2016 <doi:10.1016/j.jprot.2015.11.011>), can be run with special options considering such sub-groups during normalization and testing. Subsequently, ROC curves (Hand and Till 2001 <doi:10.1023/A:1010920819831>) can be constructed to compare multiple analysis approaches. As detailed example the data-set from Ramus et al 2016 <doi:10.1016/j.jprot.2015.11.011>) quantified by MaxQuant, ProteomeDiscoverer, and Proline is provided with a detailed analysis of heterologous spike-in proteins.

Maintained by Wolfgang Raffelsberger. Last updated 4 months ago.

8.2 match 3.67 score 17 scripts 1 dependents