Showing 13 of total 13 results (show query)
philchalmers
mirt:Multidimensional Item Response Theory
Analysis of discrete response data using unidimensional and multidimensional item analysis models under the Item Response Theory paradigm (Chalmers (2012) <doi:10.18637/jss.v048.i06>). Exploratory and confirmatory item factor analysis models are estimated with quadrature (EM) or stochastic (MHRM) methods. Confirmatory bi-factor and two-tier models are available for modeling item testlets using dimension reduction EM algorithms, while multiple group analyses and mixed effects designs are included for detecting differential item, bundle, and test functioning, and for modeling item and person covariates. Finally, latent class models such as the DINA, DINO, multidimensional latent class, mixture IRT models, and zero-inflated response models are supported, as well as a wide family of probabilistic unfolding models.
Maintained by Phil Chalmers. Last updated 10 days ago.
94.2 match 210 stars 14.98 score 2.5k scripts 40 dependentsalexanderrobitzsch
sirt:Supplementary Item Response Theory Models
Supplementary functions for item response models aiming to complement existing R packages. The functionality includes among others multidimensional compensatory and noncompensatory IRT models (Reckase, 2009, <doi:10.1007/978-0-387-89976-3>), MCMC for hierarchical IRT models and testlet models (Fox, 2010, <doi:10.1007/978-1-4419-0742-4>), NOHARM (McDonald, 1982, <doi:10.1177/014662168200600402>), Rasch copula model (Braeken, 2011, <doi:10.1007/s11336-010-9190-4>; Schroeders, Robitzsch & Schipolowski, 2014, <doi:10.1111/jedm.12054>), faceted and hierarchical rater models (DeCarlo, Kim & Johnson, 2011, <doi:10.1111/j.1745-3984.2011.00143.x>), ordinal IRT model (ISOP; Scheiblechner, 1995, <doi:10.1007/BF02301417>), DETECT statistic (Stout, Habing, Douglas & Kim, 1996, <doi:10.1177/014662169602000403>), local structural equation modeling (LSEM; Hildebrandt, Luedtke, Robitzsch, Sommer & Wilhelm, 2016, <doi:10.1080/00273171.2016.1142856>).
Maintained by Alexander Robitzsch. Last updated 3 months ago.
item-response-theoryopenblascpp
17.2 match 23 stars 10.01 score 280 scripts 22 dependentsmmansolf
AlignLV:Multiple Group Item Response Theory Alignment Helpers for 'lavaan' and 'mirt'
Allows for multiple group item response theory alignment a la 'Mplus' to be applied to lists of single-group models estimated in 'lavaan' or 'mirt'. Allows item sets that are overlapping but not identical, facilitating alignment in secondary data analysis where not all items may be shared across assessments.
Maintained by Maxwell Mansolf. Last updated 5 months ago.
16.5 match 3.00 score 2 scriptsherulor
DFIT:Differential Functioning of Items and Tests
A set of functions to perform Raju, van der Linden and Fleer's (1995, <doi:10.1177/014662169501900405>) Differential Functioning of Items and Tests (DFIT) analyses. It includes functions to use the Monte Carlo Item Parameter Replication approach (Oshima, Raju, & Nanda, 2006, <doi:10.1111/j.1745-3984.2006.00001.x>) for obtaining the associated statistical significance tests cut-off points. They may also be used for a priori and post-hoc power calculations (Cervantes, 2017, <doi:10.18637/jss.v076.i05>).
Maintained by Victor H. Cervantes. Last updated 9 months ago.
11.3 match 2.30 score 20 scriptsphilchalmers
mirtCAT:Computerized Adaptive Testing with Multidimensional Item Response Theory
Provides tools to generate HTML interfaces for adaptive and non-adaptive tests using the shiny package (Chalmers (2016) <doi:10.18637/jss.v071.i05>). Suitable for applying unidimensional and multidimensional computerized adaptive tests (CAT) using item response theory methodology and for creating simple questionnaires forms to collect response data directly in R. Additionally, optimal test designs (e.g., "shadow testing") are supported for tests that contain a large number of item selection constraints. Finally, package contains tools useful for performing Monte Carlo simulations for studying test item banks.
Maintained by Phil Chalmers. Last updated 5 months ago.
1.8 match 95 stars 9.41 score 62 scripts 3 dependentsbocaccio
plink:IRT Separate Calibration Linking Methods
Item response theory based methods are used to compute linking constants and conduct chain linking of unidimensional or multidimensional tests for multiple groups under a common item design. The unidimensional methods include the Mean/Mean, Mean/Sigma, Haebara, and Stocking-Lord methods for dichotomous (1PL, 2PL and 3PL) and/or polytomous (graded response, partial credit/generalized partial credit, nominal, and multiple-choice model) items. The multidimensional methods include the least squares method and extensions of the Haebara and Stocking-Lord method using single or multiple dilation parameters for multidimensional extensions of all the unidimensional dichotomous and polytomous item response models. The package also includes functions for importing item and/or ability parameters from common IRT software, conducting IRT true score and observed score equating, and plotting item response curves/surfaces, vector plots, information plots, and comparison plots for examining parameter drift.
Maintained by Jonathan P. Weeks. Last updated 8 years ago.
3.6 match 2 stars 4.58 score 44 scripts 1 dependentsmicbtz
equateIRT:IRT Equating Methods
Computation of direct, chain and average (bisector) equating coefficients with standard errors using Item Response Theory (IRT) methods for dichotomous items (Battauz (2013) <doi:10.1007/s11336-012-9316-y>, Battauz (2015) <doi:10.18637/jss.v068.i07>). Test scoring can be performed by true score equating and observed score equating methods. DIF detection can be performed using a Wald-type test (Battauz (2019) <doi:10.1007/s10260-018-00442-w>). The package includes tests to assess the stability of the equating transformations (Battauz(2022) <doi:10.1111/stan.12277>).
Maintained by Michela Battauz. Last updated 5 months ago.
2.3 match 4.70 score 35 scripts 2 dependentsbfast2
strucchangeRcpp:Testing, Monitoring, and Dating Structural Changes: C++ Version
A fast implementation with additional experimental features for testing, monitoring and dating structural changes in (linear) regression models. 'strucchangeRcpp' features tests/methods from the generalized fluctuation test framework as well as from the F test (Chow test) framework. This includes methods to fit, plot and test fluctuation processes (e.g. cumulative/moving sum, recursive/moving estimates) and F statistics, respectively. These methods are described in Zeileis et al. (2002) <doi:10.18637/jss.v007.i02>. Finally, the breakpoints in regression models with structural changes can be estimated together with confidence intervals, and their magnitude as well as the model fit can be evaluated using a variety of statistical measures.
Maintained by Dainius Masiliunas. Last updated 5 months ago.
1.5 match 5 stars 5.18 score 4 scripts 2 dependentsddebeer
scDIFtest:Item-Wise Score-Based DIF Detection
Detection of item-wise Differential Item Functioning (DIF) in fitted 'mirt', 'multipleGroup' or 'bfactor' models using score-based structural change tests. Under the hood the sctest() function from the 'strucchange' package is used.
Maintained by Dries Debeer. Last updated 5 years ago.
1.6 match 4.18 score 9 scripts 1 dependents