Showing 200 of total 674 results (show query)

replicable

htm2txt:Convert Html into Text

Convert a html document to plain texts by stripping off all html tags.

Maintained by Sangchul Park. Last updated 4 months ago.

20.0 match 3 stars 5.05 score 55 scripts 2 dependents

wraff

wrMisc:Analyze Experimental High-Throughput (Omics) Data

The efficient treatment and convenient analysis of experimental high-throughput (omics) data gets facilitated through this collection of diverse functions. Several functions address advanced object-conversions, like manipulating lists of lists or lists of arrays, reorganizing lists to arrays or into separate vectors, merging of multiple entries, etc. Another set of functions provides speed-optimized calculation of standard deviation (sd), coefficient of variance (CV) or standard error of the mean (SEM) for data in matrixes or means per line with respect to additional grouping (eg n groups of replicates). A group of functions facilitate dealing with non-redundant information, by indexing unique, adding counters to redundant or eliminating lines with respect redundancy in a given reference-column, etc. Help is provided to identify very closely matching numeric values to generate (partial) distance matrixes for very big data in a memory efficient manner or to reduce the complexity of large data-sets by combining very close values. Other functions help aligning a matrix or data.frame to a reference using partial matching or to mine an experimental setup to extract patterns of replicate samples. Many times large experimental datasets need some additional filtering, adequate functions are provided. Convenient data normalization is supported in various different modes, parameter estimation via permutations or boot-strap as well as flexible testing of multiple pair-wise combinations using the framework of 'limma' is provided, too. Batch reading (or writing) of sets of files and combining data to arrays is supported, too.

Maintained by Wolfgang Raffelsberger. Last updated 7 months ago.

21.8 match 4.44 score 33 scripts 4 dependents

tidyverse

modelr:Modelling Functions that Work with the Pipe

Functions for modelling that help you seamlessly integrate modelling into a pipeline of data manipulation and visualisation.

Maintained by Hadley Wickham. Last updated 1 years ago.

modelling

5.8 match 401 stars 16.44 score 6.9k scripts 1.0k dependents

henrikbengtsson

R.utils:Various Programming Utilities

Utility functions useful when programming and developing R packages.

Maintained by Henrik Bengtsson. Last updated 1 years ago.

4.9 match 63 stars 13.74 score 5.7k scripts 814 dependents

spatstat

spatstat:Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests

Comprehensive open-source toolbox for analysing Spatial Point Patterns. Focused mainly on two-dimensional point patterns, including multitype/marked points, in any spatial region. Also supports three-dimensional point patterns, space-time point patterns in any number of dimensions, point patterns on a linear network, and patterns of other geometrical objects. Supports spatial covariate data such as pixel images. Contains over 3000 functions for plotting spatial data, exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference. Data types include point patterns, line segment patterns, spatial windows, pixel images, tessellations, and linear networks. Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the functions ppm(), kppm(), slrm(), dppm() similar to glm(). Types of models include Poisson, Gibbs and Cox point processes, Neyman-Scott cluster processes, and determinantal point processes. Models may involve dependence on covariates, inter-point interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods. A model can be fitted to a list of point patterns (replicated point pattern data) using the function mppm(). The model can include random effects and fixed effects depending on the experimental design, in addition to all the features listed above. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots.

Maintained by Adrian Baddeley. Last updated 2 months ago.

cluster-processcox-point-processgibbs-processkernel-densitynetwork-analysispoint-processpoisson-processspatial-analysisspatial-dataspatial-data-analysisspatial-statisticsspatstatstatistical-methodsstatistical-modelsstatistical-testsstatistics

3.5 match 200 stars 16.32 score 5.5k scripts 41 dependents

dnychka

fields:Tools for Spatial Data

For curve, surface and function fitting with an emphasis on splines, spatial data, geostatistics, and spatial statistics. The major methods include cubic, and thin plate splines, Kriging, and compactly supported covariance functions for large data sets. The splines and Kriging methods are supported by functions that can determine the smoothing parameter (nugget and sill variance) and other covariance function parameters by cross validation and also by restricted maximum likelihood. For Kriging there is an easy to use function that also estimates the correlation scale (range parameter). A major feature is that any covariance function implemented in R and following a simple format can be used for spatial prediction. There are also many useful functions for plotting and working with spatial data as images. This package also contains an implementation of sparse matrix methods for large spatial data sets and currently requires the sparse matrix (spam) package. Use help(fields) to get started and for an overview. The fields source code is deliberately commented and provides useful explanations of numerical details as a companion to the manual pages. The commented source code can be viewed by expanding the source code version and looking in the R subdirectory. The reference for fields can be generated by the citation function in R and has DOI <doi:10.5065/D6W957CT>. Development of this package was supported in part by the National Science Foundation Grant 1417857, the National Center for Atmospheric Research, and Colorado School of Mines. See the Fields URL for a vignette on using this package and some background on spatial statistics.

Maintained by Douglas Nychka. Last updated 9 months ago.

fortran

3.8 match 15 stars 12.60 score 7.7k scripts 295 dependents

bioc

RESOLVE:RESOLVE: An R package for the efficient analysis of mutational signatures from cancer genomes

Cancer is a genetic disease caused by somatic mutations in genes controlling key biological functions such as cellular growth and division. Such mutations may arise both through cell-intrinsic and exogenous processes, generating characteristic mutational patterns over the genome named mutational signatures. The study of mutational signatures have become a standard component of modern genomics studies, since it can reveal which (environmental and endogenous) mutagenic processes are active in a tumor, and may highlight markers for therapeutic response. Mutational signatures computational analysis presents many pitfalls. First, the task of determining the number of signatures is very complex and depends on heuristics. Second, several signatures have no clear etiology, casting doubt on them being computational artifacts rather than due to mutagenic processes. Last, approaches for signatures assignment are greatly influenced by the set of signatures used for the analysis. To overcome these limitations, we developed RESOLVE (Robust EStimation Of mutationaL signatures Via rEgularization), a framework that allows the efficient extraction and assignment of mutational signatures. RESOLVE implements a novel algorithm that enables (i) the efficient extraction, (ii) exposure estimation, and (iii) confidence assessment during the computational inference of mutational signatures.

Maintained by Luca De Sano. Last updated 5 months ago.

biomedicalinformaticssomaticmutation

8.0 match 1 stars 4.60 score 3 scripts

mirzaghaderi

rtpcr:qPCR Data Analysis

Various methods are employed for statistical analysis and graphical presentation of real-time PCR (quantitative PCR or qPCR) data. 'rtpcr' handles amplification efficiency calculation, statistical analysis and graphical representation of real-time PCR data based on up to two reference genes. By accounting for amplification efficiency values, 'rtpcr' was developed using a general calculation method described by Ganger et al. (2017) <doi:10.1186/s12859-017-1949-5> and Taylor et al. (2019) <doi:10.1016/j.tibtech.2018.12.002>, covering both the Livak and Pfaffl methods. Based on the experimental conditions, the functions of the 'rtpcr' package use t-test (for experiments with a two-level factor), analysis of variance (ANOVA), analysis of covariance (ANCOVA) or analysis of repeated measure data to calculate the fold change (FC, Delta Delta Ct method) or relative expression (RE, Delta Ct method). The functions further provide standard errors and confidence intervals for means, apply statistical mean comparisons and present significance. To facilitate function application, different data sets were used as examples and the outputs were explained. ‘rtpcr’ package also provides bar plots using various controlling arguments. The 'rtpcr' package is user-friendly and easy to work with and provides an applicable resource for analyzing real-time PCR data.

Maintained by Ghader Mirzaghaderi. Last updated 26 days ago.

data-analysisqpcr

7.0 match 1 stars 4.88 score 3 scripts

a-dudek-ue

clusterSim:Searching for Optimal Clustering Procedure for a Data Set

Distance measures (GDM1, GDM2, Sokal-Michener, Bray-Curtis, for symbolic interval-valued data), cluster quality indices (Calinski-Harabasz, Baker-Hubert, Hubert-Levine, Silhouette, Krzanowski-Lai, Hartigan, Gap, Davies-Bouldin), data normalization formulas (metric data, interval-valued symbolic data), data generation (typical and non-typical data), HINoV method, replication analysis, linear ordering methods, spectral clustering, agreement indices between two partitions, plot functions (for categorical and symbolic interval-valued data). (MILLIGAN, G.W., COOPER, M.C. (1985) <doi:10.1007/BF02294245>, HUBERT, L., ARABIE, P. (1985) <doi:10.1007%2FBF01908075>, RAND, W.M. (1971) <doi:10.1080/01621459.1971.10482356>, JAJUGA, K., WALESIAK, M. (2000) <doi:10.1007/978-3-642-57280-7_11>, MILLIGAN, G.W., COOPER, M.C. (1988) <doi:10.1007/BF01897163>, JAJUGA, K., WALESIAK, M., BAK, A. (2003) <doi:10.1007/978-3-642-55721-7_12>, DAVIES, D.L., BOULDIN, D.W. (1979) <doi:10.1109/TPAMI.1979.4766909>, CALINSKI, T., HARABASZ, J. (1974) <doi:10.1080/03610927408827101>, HUBERT, L. (1974) <doi:10.1080/01621459.1974.10480191>, TIBSHIRANI, R., WALTHER, G., HASTIE, T. (2001) <doi:10.1111/1467-9868.00293>, BRECKENRIDGE, J.N. (2000) <doi:10.1207/S15327906MBR3502_5>, WALESIAK, M., DUDEK, A. (2008) <doi:10.1007/978-3-540-78246-9_11>).

Maintained by Andrzej Dudek. Last updated 6 months ago.

cpp

4.6 match 2 stars 6.35 score 512 scripts 9 dependents

truecluster

ff:Memory-Efficient Storage of Large Data on Disk and Fast Access Functions

The ff package provides data structures that are stored on disk but behave (almost) as if they were in RAM by transparently mapping only a section (pagesize) in main memory - the effective virtual memory consumption per ff object. ff supports R's standard atomic data types 'double', 'logical', 'raw' and 'integer' and non-standard atomic types boolean (1 bit), quad (2 bit unsigned), nibble (4 bit unsigned), byte (1 byte signed with NAs), ubyte (1 byte unsigned), short (2 byte signed with NAs), ushort (2 byte unsigned), single (4 byte float with NAs). For example 'quad' allows efficient storage of genomic data as an 'A','T','G','C' factor. The unsigned types support 'circular' arithmetic. There is also support for close-to-atomic types 'factor', 'ordered', 'POSIXct', 'Date' and custom close-to-atomic types. ff not only has native C-support for vectors, matrices and arrays with flexible dimorder (major column-order, major row-order and generalizations for arrays). There is also a ffdf class not unlike data.frames and import/export filters for csv files. ff objects store raw data in binary flat files in native encoding, and complement this with metadata stored in R as physical and virtual attributes. ff objects have well-defined hybrid copying semantics, which gives rise to certain performance improvements through virtualization. ff objects can be stored and reopened across R sessions. ff files can be shared by multiple ff R objects (using different data en/de-coding schemes) in the same process or from multiple R processes to exploit parallelism. A wide choice of finalizer options allows to work with 'permanent' files as well as creating/removing 'temporary' ff files completely transparent to the user. On certain OS/Filesystem combinations, creating the ff files works without notable delay thanks to using sparse file allocation. Several access optimization techniques such as Hybrid Index Preprocessing and Virtualization are implemented to achieve good performance even with large datasets, for example virtual matrix transpose without touching a single byte on disk. Further, to reduce disk I/O, 'logicals' and non-standard data types get stored native and compact on binary flat files i.e. logicals take up exactly 2 bits to represent TRUE, FALSE and NA. Beyond basic access functions, the ff package also provides compatibility functions that facilitate writing code for ff and ram objects and support for batch processing on ff objects (e.g. as.ram, as.ff, ffapply). ff interfaces closely with functionality from package 'bit': chunked looping, fast bit operations and coercions between different objects that can store subscript information ('bit', 'bitwhich', ff 'boolean', ri range index, hi hybrid index). This allows to work interactively with selections of large datasets and quickly modify selection criteria. Further high-performance enhancements can be made available upon request.

Maintained by Jens Oehlschlägel. Last updated 2 months ago.

cpp

2.3 match 27 stars 12.01 score 764 scripts 71 dependents

mjlajeunesse

metagear:Comprehensive Research Synthesis Tools for Systematic Reviews and Meta-Analysis

Functionalities for facilitating systematic reviews, data extractions, and meta-analyses. It includes a GUI (graphical user interface) to help screen the abstracts and titles of bibliographic data; tools to assign screening effort across multiple collaborators/reviewers and to assess inter- reviewer reliability; tools to help automate the download and retrieval of journal PDF articles from online databases; figure and image extractions from PDFs; web scraping of citations; automated and manual data extraction from scatter-plot and bar-plot images; PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagrams; simple imputation tools to fill gaps in incomplete or missing study parameters; generation of random effects sizes for Hedges' d, log response ratio, odds ratio, and correlation coefficients for Monte Carlo experiments; covariance equations for modelling dependencies among multiple effect sizes (e.g., effect sizes with a common control); and finally summaries that replicate analyses and outputs from widely used but no longer updated meta-analysis software (i.e., metawin). Funding for this package was supported by National Science Foundation (NSF) grants DBI-1262545 and DEB-1451031. CITE: Lajeunesse, M.J. (2016) Facilitating systematic reviews, data extraction and meta-analysis with the metagear package for R. Methods in Ecology and Evolution 7, 323-330 <doi:10.1111/2041-210X.12472>.

Maintained by Marc J. Lajeunesse. Last updated 4 years ago.

3.9 match 14 stars 6.71 score 91 scripts

bioc

BiocGenerics:S4 generic functions used in Bioconductor

The package defines many S4 generic functions used in Bioconductor.

Maintained by Hervé Pagès. Last updated 1 months ago.

infrastructurebioconductor-packagecore-package

1.8 match 12 stars 14.22 score 612 scripts 2.2k dependents

insightsengineering

tern:Create Common TLGs Used in Clinical Trials

Table, Listings, and Graphs (TLG) library for common outputs used in clinical trials.

Maintained by Joe Zhu. Last updated 2 months ago.

clinical-trialsgraphslistingsnestoutputstables

1.9 match 79 stars 12.62 score 186 scripts 9 dependents