Showing 200 of total 351 results (show query)

neurodata

lolR:Linear Optimal Low-Rank Projection

Supervised learning techniques designed for the situation when the dimensionality exceeds the sample size have a tendency to overfit as the dimensionality of the data increases. To remedy this High dimensionality; low sample size (HDLSS) situation, we attempt to learn a lower-dimensional representation of the data before learning a classifier. That is, we project the data to a situation where the dimensionality is more manageable, and then are able to better apply standard classification or clustering techniques since we will have fewer dimensions to overfit. A number of previous works have focused on how to strategically reduce dimensionality in the unsupervised case, yet in the supervised HDLSS regime, few works have attempted to devise dimensionality reduction techniques that leverage the labels associated with the data. In this package and the associated manuscript Vogelstein et al. (2017) <arXiv:1709.01233>, we provide several methods for feature extraction, some utilizing labels and some not, along with easily extensible utilities to simplify cross-validative efforts to identify the best feature extraction method. Additionally, we include a series of adaptable benchmark simulations to serve as a standard for future investigative efforts into supervised HDLSS. Finally, we produce a comprehensive comparison of the included algorithms across a range of benchmark simulations and real data applications.

Maintained by Eric Bridgeford. Last updated 4 years ago.

16.6 match 20 stars 7.28 score 80 scripts

bnosac

doc2vec:Distributed Representations of Sentences, Documents and Topics

Learn vector representations of sentences, paragraphs or documents by using the 'Paragraph Vector' algorithms, namely the distributed bag of words ('PV-DBOW') and the distributed memory ('PV-DM') model. The techniques in the package are detailed in the paper "Distributed Representations of Sentences and Documents" by Mikolov et al. (2014), available at <arXiv:1405.4053>. The package also provides an implementation to cluster documents based on these embedding using a technique called top2vec. Top2vec finds clusters in text documents by combining techniques to embed documents and words and density-based clustering. It does this by embedding documents in the semantic space as defined by the 'doc2vec' algorithm. Next it maps these document embeddings to a lower-dimensional space using the 'Uniform Manifold Approximation and Projection' (UMAP) clustering algorithm and finds dense areas in that space using a 'Hierarchical Density-Based Clustering' technique (HDBSCAN). These dense areas are the topic clusters which can be represented by the corresponding topic vector which is an aggregate of the document embeddings of the documents which are part of that topic cluster. In the same semantic space similar words can be found which are representative of the topic. More details can be found in the paper 'Top2Vec: Distributed Representations of Topics' by D. Angelov available at <arXiv:2008.09470>.

Maintained by Jan Wijffels. Last updated 3 years ago.

doc2vecembeddingsnatural-language-processingparagraph2vecword2veccpp

11.0 match 48 stars 5.74 score 23 scripts

fberding

aifeducation:Artificial Intelligence for Education

In social and educational settings, the use of Artificial Intelligence (AI) is a challenging task. Relevant data is often only available in handwritten forms, or the use of data is restricted by privacy policies. This often leads to small data sets. Furthermore, in the educational and social sciences, data is often unbalanced in terms of frequencies. To support educators as well as educational and social researchers in using the potentials of AI for their work, this package provides a unified interface for neural nets in 'PyTorch' to deal with natural language problems. In addition, the package ships with a shiny app, providing a graphical user interface. This allows the usage of AI for people without skills in writing python/R scripts. The tools integrate existing mathematical and statistical methods for dealing with small data sets via pseudo-labeling (e.g. Cascante-Bonilla et al. (2020) <doi:10.48550/arXiv.2001.06001>) and imbalanced data via the creation of synthetic cases (e.g. Bunkhumpornpat et al. (2012) <doi:10.1007/s10489-011-0287-y>). Performance evaluation of AI is connected to measures from content analysis which educational and social researchers are generally more familiar with (e.g. Berding & Pargmann (2022) <doi:10.30819/5581>, Gwet (2014) <ISBN:978-0-9708062-8-4>, Krippendorff (2019) <doi:10.4135/9781071878781>). Estimation of energy consumption and CO2 emissions during model training is done with the 'python' library 'codecarbon'. Finally, all objects created with this package allow to share trained AI models with other people.

Maintained by Berding Florian. Last updated 1 months ago.

cpp

11.3 match 4.48 score 8 scripts

trelliscope

trelliscope:Create Interactive Multi-Panel Displays

Trelliscope enables interactive exploration of data frames of visualizations.

Maintained by Ryan Hafen. Last updated 7 months ago.

visualization

7.2 match 29 stars 6.43 score 117 scripts

thomaschln

kgraph:Knowledge Graphs Constructions and Visualizations

Knowledge graphs enable to efficiently visualize and gain insights into large-scale data analysis results, as p-values from multiple studies or embedding data matrices. The usual workflow is a user providing a data frame of association studies results and specifying target nodes, e.g. phenotypes, to visualize. The knowledge graph then shows all the features which are significantly associated with the phenotype, with the edges being proportional to the association scores. As the user adds several target nodes and grouping information about the nodes such as biological pathways, the construction of such graphs soon becomes complex. The 'kgraph' package aims to enable users to easily build such knowledge graphs, and provides two main features: first, to enable building a knowledge graph based on a data frame of concepts relationships, be it p-values or cosine similarities; second, to enable determining an appropriate cut-off on cosine similarities from a complete embedding matrix, to enable the building of a knowledge graph directly from an embedding matrix. The 'kgraph' package provides several display, layout and cut-off options, and has already proven useful to researchers to enable them to visualize large sets of p-value associations with various phenotypes, and to quickly be able to visualize embedding results. Two example datasets are provided to demonstrate these behaviors, and several live 'shiny' applications are hosted by the CELEHS laboratory and Parse Health, as the KESER Mental Health application <https://keser-mental-health.parse-health.org/> based on Hong C. (2021) <doi:10.1038/s41746-021-00519-z>.

Maintained by Thomas Charlon. Last updated 24 days ago.

6.4 match 4.85 score

jdonaldson

tsne:T-Distributed Stochastic Neighbor Embedding for R (t-SNE)

A "pure R" implementation of the t-SNE algorithm.

Maintained by Justin Donaldson. Last updated 6 years ago.

2.8 match 58 stars 9.35 score 656 scripts 13 dependents

fishfollower

stockassessment:State-Space Assessment Model

Fitting SAM...

Maintained by Anders Nielsen. Last updated 13 days ago.

stockassessmentcpp

3.3 match 49 stars 7.76 score 324 scripts 2 dependents

r-gregmisc

gtools:Various R Programming Tools

Functions to assist in R programming, including: - assist in developing, updating, and maintaining R and R packages ('ask', 'checkRVersion', 'getDependencies', 'keywords', 'scat'), - calculate the logit and inverse logit transformations ('logit', 'inv.logit'), - test if a value is missing, empty or contains only NA and NULL values ('invalid'), - manipulate R's .Last function ('addLast'), - define macros ('defmacro'), - detect odd and even integers ('odd', 'even'), - convert strings containing non-ASCII characters (like single quotes) to plain ASCII ('ASCIIfy'), - perform a binary search ('binsearch'), - sort strings containing both numeric and character components ('mixedsort'), - create a factor variable from the quantiles of a continuous variable ('quantcut'), - enumerate permutations and combinations ('combinations', 'permutation'), - calculate and convert between fold-change and log-ratio ('foldchange', 'logratio2foldchange', 'foldchange2logratio'), - calculate probabilities and generate random numbers from Dirichlet distributions ('rdirichlet', 'ddirichlet'), - apply a function over adjacent subsets of a vector ('running'), - modify the TCP_NODELAY ('de-Nagle') flag for socket objects, - efficient 'rbind' of data frames, even if the column names don't match ('smartbind'), - generate significance stars from p-values ('stars.pval'), - convert characters to/from ASCII codes ('asc', 'chr'), - convert character vector to ASCII representation ('ASCIIfy'), - apply title capitalization rules to a character vector ('capwords').

Maintained by Ben Bolker. Last updated 9 months ago.

1.7 match 25 stars 14.47 score 11k scripts 1.1k dependents

brodieg

diffobj:Diffs for R Objects

Generate a colorized diff of two R objects for an intuitive visualization of their differences.

Maintained by Brodie Gaslam. Last updated 3 years ago.

diff

1.5 match 232 stars 13.12 score 107 scripts 486 dependents

alexym1

fusionchartsR:Embedding FusionCharts in R

FusionCharts provides awesome and minimalist functions to make beautiful interactive charts <https://www.fusioncharts.com/>.

Maintained by Alex Yahiaoui Martinez. Last updated 3 months ago.

3.3 match 6 stars 4.40 score 42 scripts