Showing 200 of total 613 results (show query)

insightsengineering

tern:Create Common TLGs Used in Clinical Trials

Table, Listings, and Graphs (TLG) library for common outputs used in clinical trials.

Maintained by Joe Zhu. Last updated 2 months ago.

clinical-trialsgraphslistingsnestoutputstables

13.6 match 79 stars 12.62 score 186 scripts 9 dependents

atorus-research

xportr:Utilities to Output CDISC SDTM/ADaM XPT Files

Tools to build CDISC compliant data sets and check for CDISC compliance.

Maintained by Eli Miller. Last updated 3 months ago.

clinical-programmersxpt

7.5 match 43 stars 9.01 score 102 scripts

brockk

escalation:A Modular Approach to Dose-Finding Clinical Trials

Methods for working with dose-finding clinical trials. We provide implementations of many dose-finding clinical trial designs, including the continual reassessment method (CRM) by O'Quigley et al. (1990) <doi:10.2307/2531628>, the toxicity probability interval (TPI) design by Ji et al. (2007) <doi:10.1177/1740774507079442>, the modified TPI (mTPI) design by Ji et al. (2010) <doi:10.1177/1740774510382799>, the Bayesian optimal interval design (BOIN) by Liu & Yuan (2015) <doi:10.1111/rssc.12089>, EffTox by Thall & Cook (2004) <doi:10.1111/j.0006-341X.2004.00218.x>; the design of Wages & Tait (2015) <doi:10.1080/10543406.2014.920873>, and the 3+3 described by Korn et al. (1994) <doi:10.1002/sim.4780131802>. All designs are implemented with a common interface. We also offer optional additional classes to tailor the behaviour of all designs, including avoiding skipping doses, stopping after n patients have been treated at the recommended dose, stopping when a toxicity condition is met, or demanding that n patients are treated before stopping is allowed. By daisy-chaining together these classes using the pipe operator from 'magrittr', it is simple to tailor the behaviour of a dose-finding design so it behaves how the trialist wants. Having provided a flexible interface for specifying designs, we then provide functions to run simulations and calculate dose-paths for future cohorts of patients.

Maintained by Kristian Brock. Last updated 2 months ago.

7.4 match 15 stars 7.91 score 67 scripts

atorus-research

Tplyr:A Traceability Focused Grammar of Clinical Data Summary

A traceability focused tool created to simplify the data manipulation necessary to create clinical summaries.

Maintained by Mike Stackhouse. Last updated 1 years ago.

pharmatables

5.3 match 95 stars 9.49 score 138 scripts 2 dependents

humaniverse

geographr:R package for mapping UK geographies

A package to distribute and compute on UK geographical data.

Maintained by Mike Page. Last updated 11 days ago.

6.7 match 38 stars 6.67 score 408 scripts

cran

frailtypack:Shared, Joint (Generalized) Frailty Models; Surrogate Endpoints

The following several classes of frailty models using a penalized likelihood estimation on the hazard function but also a parametric estimation can be fit using this R package: 1) A shared frailty model (with gamma or log-normal frailty distribution) and Cox proportional hazard model. Clustered and recurrent survival times can be studied. 2) Additive frailty models for proportional hazard models with two correlated random effects (intercept random effect with random slope). 3) Nested frailty models for hierarchically clustered data (with 2 levels of clustering) by including two iid gamma random effects. 4) Joint frailty models in the context of the joint modelling for recurrent events with terminal event for clustered data or not. A joint frailty model for two semi-competing risks and clustered data is also proposed. 5) Joint general frailty models in the context of the joint modelling for recurrent events with terminal event data with two independent frailty terms. 6) Joint Nested frailty models in the context of the joint modelling for recurrent events with terminal event, for hierarchically clustered data (with two levels of clustering) by including two iid gamma random effects. 7) Multivariate joint frailty models for two types of recurrent events and a terminal event. 8) Joint models for longitudinal data and a terminal event. 9) Trivariate joint models for longitudinal data, recurrent events and a terminal event. 10) Joint frailty models for the validation of surrogate endpoints in multiple randomized clinical trials with failure-time and/or longitudinal endpoints with the possibility to use a mediation analysis model. 11) Conditional and Marginal two-part joint models for longitudinal semicontinuous data and a terminal event. 12) Joint frailty-copula models for the validation of surrogate endpoints in multiple randomized clinical trials with failure-time endpoints. 13) Generalized shared and joint frailty models for recurrent and terminal events. Proportional hazards (PH), additive hazard (AH), proportional odds (PO) and probit models are available in a fully parametric framework. For PH and AH models, it is possible to consider type-varying coefficients and flexible semiparametric hazard function. Prediction values are available (for a terminal event or for a new recurrent event). Left-truncated (not for Joint model), right-censored data, interval-censored data (only for Cox proportional hazard and shared frailty model) and strata are allowed. In each model, the random effects have the gamma or normal distribution. Now, you can also consider time-varying covariates effects in Cox, shared and joint frailty models (1-5). The package includes concordance measures for Cox proportional hazards models and for shared frailty models. 14) Competing Joint Frailty Model: A single type of recurrent event and two terminal events. 15) functions to compute power and sample size for four Gamma-frailty-based designs: Shared Frailty Models, Nested Frailty Models, Joint Frailty Models, and General Joint Frailty Models. Each design includes two primary functions: a power function, which computes power given a specified sample size; and a sample size function, which computes the required sample size to achieve a specified power. Moreover, the package can be used with its shiny application, in a local mode or by following the link below.

Maintained by Virginie Rondeau. Last updated 10 days ago.

fortranopenmp

7.6 match 7 stars 5.56 score 1 dependents

tidymodels

modeldata:Data Sets Useful for Modeling Examples

Data sets used for demonstrating or testing model-related packages are contained in this package.

Maintained by Max Kuhn. Last updated 5 months ago.

3.5 match 22 stars 10.66 score 2.2k scripts 17 dependents

merck

r2rtf:Easily Create Production-Ready Rich Text Format (RTF) Tables and Figures

Create production-ready Rich Text Format (RTF) tables and figures with flexible format.

Maintained by Benjamin Wang. Last updated 5 days ago.

3.3 match 78 stars 10.82 score 171 scripts 10 dependents

mskcc-epi-bio

PROscorerTools:Tools to Score Patient-Reported Outcome (PRO) and Other Psychometric Measures

Provides a reliable and flexible toolbox to score patient-reported outcome (PRO), Quality of Life (QOL), and other psychometric measures. The guiding philosophy is that scoring errors can be eliminated by using a limited number of well-tested, well-behaved functions to score PRO-like measures. The workhorse of the package is the 'scoreScale' function, which can be used to score most single-scale measures. It can reverse code items that need to be reversed before scoring and pro-rate scores for missing item data. Currently, three different types of scores can be output: summed item scores, mean item scores, and scores scaled to range from 0 to 100. The 'PROscorerTools' functions can be used to write new functions that score more complex measures. In fact, 'PROscorerTools' functions are the building blocks of the scoring functions in the 'PROscorer' package (which is a repository of functions that score specific commonly-used instruments). Users are encouraged to use 'PROscorerTools' to write scoring functions for their favorite PRO-like instruments, and to submit these functions for inclusion in 'PROscorer' (a tutorial vignette will be added soon). The long-term vision for the 'PROscorerTools' and 'PROscorer' packages is to provide an easy-to-use system to facilitate the incorporation of PRO measures into research studies in a scientifically rigorous and reproducible manner. These packages and their vignettes are intended to help establish and promote "best practices" for scoring and describing PRO-like measures in research.

Maintained by Ray Baser. Last updated 1 years ago.

clinical-trialsprospsychometricsqolquality-of-lifequestionnairesurvey

7.5 match 2 stars 4.73 score 18 scripts 1 dependents

begglest

BayesCTDesign:Two Arm Bayesian Clinical Trial Design with and Without Historical Control Data

A set of functions to help clinical trial researchers calculate power and sample size for two-arm Bayesian randomized clinical trials that do or do not incorporate historical control data. At some point during the design process, a clinical trial researcher who is designing a basic two-arm Bayesian randomized clinical trial needs to make decisions about power and sample size within the context of hypothesized treatment effects. Through simulation, the simple_sim() function will estimate power and other user specified clinical trial characteristics at user specified sample sizes given user defined scenarios about treatment effect,control group characteristics, and outcome. If the clinical trial researcher has access to historical control data, then the researcher can design a two-arm Bayesian randomized clinical trial that incorporates the historical data. In such a case, the researcher needs to work through the potential consequences of historical and randomized control differences on trial characteristics, in addition to working through issues regarding power in the context of sample size, treatment effect size, and outcome. If a researcher designs a clinical trial that will incorporate historical control data, the researcher needs the randomized controls to be from the same population as the historical controls. What if this is not the case when the designed trial is implemented? During the design phase, the researcher needs to investigate the negative effects of possible historic/randomized control differences on power, type one error, and other trial characteristics. Using this information, the researcher should design the trial to mitigate these negative effects. Through simulation, the historic_sim() function will estimate power and other user specified clinical trial characteristics at user specified sample sizes given user defined scenarios about historical and randomized control differences as well as treatment effects and outcomes. The results from historic_sim() and simple_sim() can be printed with print_table() and graphed with plot_table() methods. Outcomes considered are Gaussian, Poisson, Bernoulli, Lognormal, Weibull, and Piecewise Exponential. The methods are described in Eggleston et al. (2021) <doi:10.18637/jss.v100.i21>.

Maintained by Barry Eggleston. Last updated 3 years ago.

10.5 match 2 stars 3.15 score 14 scripts

hputter

dynpred:Companion Package to "Dynamic Prediction in Clinical Survival Analysis"

The dynpred package contains functions for dynamic prediction in survival analysis.

Maintained by Hein Putter. Last updated 10 years ago.

9.3 match 2 stars 3.23 score 40 scripts 1 dependents

yayayaoyaoyao

RARtrials:Response-Adaptive Randomization in Clinical Trials

Some response-adaptive randomization methods commonly found in literature are included in this package. These methods include the randomized play-the-winner rule for binary endpoint (Wei and Durham (1978) <doi:10.2307/2286290>), the doubly adaptive biased coin design with minimal variance strategy for binary endpoint (Atkinson and Biswas (2013) <doi:10.1201/b16101>, Rosenberger and Lachin (2015) <doi:10.1002/9781118742112>) and maximal power strategy targeting Neyman allocation for binary endpoint (Tymofyeyev, Rosenberger, and Hu (2007) <doi:10.1198/016214506000000906>) and RSIHR allocation with each letter representing the first character of the names of the individuals who first proposed this rule (Youngsook and Hu (2010) <doi:10.1198/sbr.2009.0056>, Bello and Sabo (2016) <doi:10.1080/00949655.2015.1114116>), A-optimal Allocation for continuous endpoint (Sverdlov and Rosenberger (2013) <doi:10.1080/15598608.2013.783726>), Aa-optimal Allocation for continuous endpoint (Sverdlov and Rosenberger (2013) <doi:10.1080/15598608.2013.783726>), generalized RSIHR allocation for continuous endpoint (Atkinson and Biswas (2013) <doi:10.1201/b16101>), Bayesian response-adaptive randomization with a control group using the Thall \& Wathen method for binary and continuous endpoints (Thall and Wathen (2007) <doi:10.1016/j.ejca.2007.01.006>) and the forward-looking Gittins index rule for binary and continuous endpoints (Villar, Wason, and Bowden (2015) <doi:10.1111/biom.12337>, Williamson and Villar (2019) <doi:10.1111/biom.13119>).

Maintained by Chuyao Xu. Last updated 2 months ago.

6.0 match 4.65 score

mrc-ide

malariasimulation:An individual based model for malaria

Specifies the latest and greatest malaria model.

Maintained by Giovanni Charles. Last updated 27 days ago.

cpp

3.3 match 16 stars 8.17 score 146 scripts

huanglabumn

oncoPredict:Drug Response Modeling and Biomarker Discovery

Allows for building drug response models using screening data between bulk RNA-Seq and a drug response metric and two additional tools for biomarker discovery that have been developed by the Huang Laboratory at University of Minnesota. There are 3 main functions within this package. (1) calcPhenotype is used to build drug response models on RNA-Seq data and impute them on any other RNA-Seq dataset given to the model. (2) GLDS is used to calculate the general level of drug sensitivity, which can improve biomarker discovery. (3) IDWAS can take the results from calcPhenotype and link the imputed response back to available genomic (mutation and CNV alterations) to identify biomarkers. Each of these functions comes from a paper from the Huang research laboratory. Below gives the relevant paper for each function. calcPhenotype - Geeleher et al, Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. GLDS - Geeleher et al, Cancer biomarker discovery is improved by accounting for variability in general levels of drug sensitivity in pre-clinical models. IDWAS - Geeleher et al, Discovering novel pharmacogenomic biomarkers by imputing drug response in cancer patients from large genomics studies.

Maintained by Robert Gruener. Last updated 12 months ago.

svapreprocesscorestringrbiomartgenefilterorg.hs.eg.dbgenomicfeaturestxdb.hsapiens.ucsc.hg19.knowngenetcgabiolinksbiocgenericsgenomicrangesirangess4vectors

4.0 match 18 stars 6.47 score 41 scripts

drizopoulos

JM:Joint Modeling of Longitudinal and Survival Data

Shared parameter models for the joint modeling of longitudinal and time-to-event data.

Maintained by Dimitris Rizopoulos. Last updated 3 years ago.

5.3 match 2 stars 4.93 score 112 scripts 1 dependents

glsnow

blockrand:Randomization for Block Random Clinical Trials

Create randomizations for block random clinical trials. Can also produce a pdf file of randomization cards.

Maintained by Greg Snow. Last updated 5 years ago.

7.1 match 2 stars 3.60 score 67 scripts 1 dependents

bioc

PDATK:Pancreatic Ductal Adenocarcinoma Tool-Kit

Pancreatic ductal adenocarcinoma (PDA) has a relatively poor prognosis and is one of the most lethal cancers. Molecular classification of gene expression profiles holds the potential to identify meaningful subtypes which can inform therapeutic strategy in the clinical setting. The Pancreatic Cancer Adenocarcinoma Tool-Kit (PDATK) provides an S4 class-based interface for performing unsupervised subtype discovery, cross-cohort meta-clustering, gene-expression-based classification, and subsequent survival analysis to identify prognostically useful subtypes in pancreatic cancer and beyond. Two novel methods, Consensus Subtypes in Pancreatic Cancer (CSPC) and Pancreatic Cancer Overall Survival Predictor (PCOSP) are included for consensus-based meta-clustering and overall-survival prediction, respectively. Additionally, four published subtype classifiers and three published prognostic gene signatures are included to allow users to easily recreate published results, apply existing classifiers to new data, and benchmark the relative performance of new methods. The use of existing Bioconductor classes as input to all PDATK classes and methods enables integration with existing Bioconductor datasets, including the 21 pancreatic cancer patient cohorts available in the MetaGxPancreas data package. PDATK has been used to replicate results from Sandhu et al (2019) [https://doi.org/10.1200/cci.18.00102] and an additional paper is in the works using CSPC to validate subtypes from the included published classifiers, both of which use the data available in MetaGxPancreas. The inclusion of subtype centroids and prognostic gene signatures from these and other publications will enable researchers and clinicians to classify novel patient gene expression data, allowing the direct clinical application of the classifiers included in PDATK. Overall, PDATK provides a rich set of tools to identify and validate useful prognostic and molecular subtypes based on gene-expression data, benchmark new classifiers against existing ones, and apply discovered classifiers on novel patient data to inform clinical decision making.

Maintained by Benjamin Haibe-Kains. Last updated 5 months ago.

geneexpressionpharmacogeneticspharmacogenomicssoftwareclassificationsurvivalclusteringgeneprediction

5.6 match 1 stars 4.31 score 17 scripts

tirgit

missCompare:Intuitive Missing Data Imputation Framework

Offers a convenient pipeline to test and compare various missing data imputation algorithms on simulated and real data. These include simpler methods, such as mean and median imputation and random replacement, but also include more sophisticated algorithms already implemented in popular R packages, such as 'mi', described by Su et al. (2011) <doi:10.18637/jss.v045.i02>; 'mice', described by van Buuren and Groothuis-Oudshoorn (2011) <doi:10.18637/jss.v045.i03>; 'missForest', described by Stekhoven and Buhlmann (2012) <doi:10.1093/bioinformatics/btr597>; 'missMDA', described by Josse and Husson (2016) <doi:10.18637/jss.v070.i01>; and 'pcaMethods', described by Stacklies et al. (2007) <doi:10.1093/bioinformatics/btm069>. The central assumption behind 'missCompare' is that structurally different datasets (e.g. larger datasets with a large number of correlated variables vs. smaller datasets with non correlated variables) will benefit differently from different missing data imputation algorithms. 'missCompare' takes measurements of your dataset and sets up a sandbox to try a curated list of standard and sophisticated missing data imputation algorithms and compares them assuming custom missingness patterns. 'missCompare' will also impute your real-life dataset for you after the selection of the best performing algorithm in the simulations. The package also provides various post-imputation diagnostics and visualizations to help you assess imputation performance.

Maintained by Tibor V. Varga. Last updated 4 years ago.

comparisoncomparison-benchmarksimputationimputation-algorithmimputation-methodsimputationskolmogorov-smirnovmissingmissing-datamissing-data-imputationmissing-status-checkmissing-valuesmissingnesspost-imputation-diagnosticsrmse

4.0 match 39 stars 5.89 score 40 scripts

usaid-oha-si

gophr:Utility functions related to working with the MER Structured Dataset

This packages contains a number of functions for working with the PEPFAR MSD.

Maintained by Aaron Chafetz. Last updated 4 months ago.

3.8 match 1 stars 6.21 score 182 scripts 1 dependents

mjuraska

CoRpower:Power Calculations for Assessing Correlates of Risk in Clinical Efficacy Trials

Calculates power for assessment of intermediate biomarker responses as correlates of risk in the active treatment group in clinical efficacy trials, as described in Gilbert, Janes, and Huang, Power/Sample Size Calculations for Assessing Correlates of Risk in Clinical Efficacy Trials (2016, Statistics in Medicine). The methods differ from past approaches by accounting for the level of clinical treatment efficacy overall and in biomarker response subgroups, which enables the correlates of risk results to be interpreted in terms of potential correlates of efficacy/protection. The methods also account for inter-individual variability of the observed biomarker response that is not biologically relevant (e.g., due to technical measurement error of the laboratory assay used to measure the biomarker response), which is important because power to detect a specified correlate of risk effect size is heavily affected by the biomarker's measurement error. The methods can be used for a general binary clinical endpoint model with a univariate dichotomous, trichotomous, or continuous biomarker response measured in active treatment recipients at a fixed timepoint after randomization, with either case-cohort Bernoulli sampling or case-control without-replacement sampling of the biomarker (a baseline biomarker is handled as a trivial special case). In a specified two-group trial design, the computeN() function can initially be used for calculating additional requisite design parameters pertaining to the target population of active treatment recipients observed to be at risk at the biomarker sampling timepoint. Subsequently, the power calculation employs an inverse probability weighted logistic regression model fitted by the tps() function in the 'osDesign' package. Power results as well as the relationship between the correlate of risk effect size and treatment efficacy can be visualized using various plotting functions. To link power calculations for detecting a correlate of risk and a correlate of treatment efficacy, a baseline immunogenicity predictor (BIP) can be simulated according to a specified classification rule (for dichotomous or trichotomous BIPs) or correlation with the biomarker response (for continuous BIPs), then outputted along with biomarker response data under assignment to treatment, and clinical endpoint data for both treatment and placebo groups.

Maintained by Michal Juraska. Last updated 4 years ago.

5.4 match 4.15 score 14 scripts

davidchampredon

ern:Effective Reproduction Number Estimation

Estimate the effective reproduction number from wastewater and clinical data sources.

Maintained by David Champredon. Last updated 2 months ago.

jagscpp

9.1 match 2.45 score 14 scripts

insightsengineering

dunlin:Preprocessing Tools for Clinical Trial Data

A collection of functions to preprocess data and organize them in a format amenable to use by chevron.

Maintained by Joe Zhu. Last updated 24 days ago.

3.0 match 4 stars 7.38 score 30 scripts 1 dependents

ccicb

CRUX:Easily explore patterns of somatic variation in cancer using 'CRUX'

Shiny app for exploring somatic variation in cancer. Powered by maftools.

Maintained by Sam El-Kamand. Last updated 1 years ago.

10.0 match 2 stars 2.00 score 5 scripts