Showing 18 of total 18 results (show query)
hta-pharma
maicplus:Matching Adjusted Indirect Comparison
Facilitates performing matching adjusted indirect comparison (MAIC) analysis where the endpoint of interest is either time-to-event (e.g. overall survival) or binary (e.g. objective tumor response). The method is described by Signorovitch et al (2012) <doi:10.1016/j.jval.2012.05.004>.
Maintained by Isaac Gravestock. Last updated 23 days ago.
15.0 match 5 stars 7.37 score 16 scriptsatorus-research
Tplyr:A Traceability Focused Grammar of Clinical Data Summary
A traceability focused tool created to simplify the data manipulation necessary to create clinical summaries.
Maintained by Mike Stackhouse. Last updated 1 years ago.
11.0 match 95 stars 9.49 score 138 scripts 2 dependentscalvagone
campsis:Generic PK/PD Simulation Platform CAMPSIS
A generic, easy-to-use and intuitive pharmacokinetic/pharmacodynamic (PK/PD) simulation platform based on R packages 'rxode2' and 'mrgsolve'. CAMPSIS provides an abstraction layer over the underlying processes of writing a PK/PD model, assembling a custom dataset and running a simulation. CAMPSIS has a strong dependency to the R package 'campsismod', which allows to read/write a model from/to files and adapt it further on the fly in the R environment. Package 'campsis' allows the user to assemble a dataset in an intuitive manner. Once the user’s dataset is ready, the package is in charge of preparing the simulation, calling 'rxode2' or 'mrgsolve' (at the user's choice) and returning the results, for the given model, dataset and desired simulation settings.
Maintained by Nicolas Luyckx. Last updated 1 months ago.
3.4 match 8 stars 7.52 score 93 scriptsopenpharma
DoseFinding:Planning and Analyzing Dose Finding Experiments
The DoseFinding package provides functions for the design and analysis of dose-finding experiments (with focus on pharmaceutical Phase II clinical trials). It provides functions for: multiple contrast tests, fitting non-linear dose-response models (using Bayesian and non-Bayesian estimation), calculating optimal designs and an implementation of the MCPMod methodology (Pinheiro et al. (2014) <doi:10.1002/sim.6052>).
Maintained by Marius Thomas. Last updated 4 days ago.
1.6 match 8 stars 10.32 score 98 scripts 10 dependentsopenpharma
brms.mmrm:Bayesian MMRMs using 'brms'
The mixed model for repeated measures (MMRM) is a popular model for longitudinal clinical trial data with continuous endpoints, and 'brms' is a powerful and versatile package for fitting Bayesian regression models. The 'brms.mmrm' R package leverages 'brms' to run MMRMs, and it supports a simplified interfaced to reduce difficulty and align with the best practices of the life sciences. References: Bürkner (2017) <doi:10.18637/jss.v080.i01>, Mallinckrodt (2008) <doi:10.1177/009286150804200402>.
Maintained by William Michael Landau. Last updated 5 months ago.
brmslife-sciencesmc-stanmmrmstanstatistics
1.5 match 21 stars 8.80 score 13 scriptsnovartis
RBesT:R Bayesian Evidence Synthesis Tools
Tool-set to support Bayesian evidence synthesis. This includes meta-analysis, (robust) prior derivation from historical data, operating characteristics and analysis (1 and 2 sample cases). Please refer to Weber et al. (2021) <doi:10.18637/jss.v100.i19> for details on applying this package while Neuenschwander et al. (2010) <doi:10.1177/1740774509356002> and Schmidli et al. (2014) <doi:10.1111/biom.12242> explain details on the methodology.
Maintained by Sebastian Weber. Last updated 2 months ago.
bayesianclinicalhistorical-datameta-analysiscpp
1.5 match 22 stars 7.87 score 115 scripts 4 dependentsnovartis
xgxr:Exploratory Graphics for Pharmacometrics
Supports a structured approach for exploring PKPD data <https://opensource.nibr.com/xgx/>. It also contains helper functions for enabling the modeler to follow best R practices (by appending the program name, figure name location, and draft status to each plot). In addition, it enables the modeler to follow best graphical practices (by providing a theme that reduces chart ink, and by providing time-scale, log-scale, and reverse-log-transform-scale functions for more readable axes). Finally, it provides some data checking and summarizing functions for rapidly exploring pharmacokinetics and pharmacodynamics (PKPD) datasets.
Maintained by Andrew Stein. Last updated 1 years ago.
1.5 match 13 stars 7.76 score 105 scripts 5 dependentsggpmxdevelopment
ggPMX:'ggplot2' Based Tool to Facilitate Diagnostic Plots for NLME Models
At Novartis, we aimed at standardizing the set of diagnostic plots used for modeling activities in order to reduce the overall effort required for generating such plots. For this, we developed a guidance that proposes an adequate set of diagnostics and a toolbox, called 'ggPMX' to execute them. 'ggPMX' is a toolbox that can generate all diagnostic plots at a quality sufficient for publication and submissions using few lines of code. This package focuses on plots recommended by ISoP <doi:10.1002/psp4.12161>. While not required, you can get/install the 'R' 'lixoftConnectors' package in the 'Monolix' installation, as described at the following url <https://monolix.lixoft.com/monolix-api/lixoftconnectors_installation/>. When 'lixoftConnectors' is available, 'R' can use 'Monolix' directly to create the required Chart Data instead of exporting it from the 'Monolix' gui.
Maintained by Matthew Fidler. Last updated 1 years ago.
1.5 match 39 stars 7.23 score 80 scriptsboehringer-ingelheim
BayesianMCPMod:Simulate, Evaluate, and Analyze Dose Finding Trials with Bayesian MCPMod
Bayesian MCPMod (Fleischer et al. (2022) <doi:10.1002/pst.2193>) is an innovative method that improves the traditional MCPMod by systematically incorporating historical data, such as previous placebo group data. This R package offers functions for simulating, analyzing, and evaluating Bayesian MCPMod trials with normally distributed endpoints. It enables the assessment of trial designs incorporating historical data across various true dose-response relationships and sample sizes. Robust mixture prior distributions, such as those derived with the Meta-Analytic-Predictive approach (Schmidli et al. (2014) <doi:10.1111/biom.12242>), can be specified for each dose group. Resulting mixture posterior distributions are used in the Bayesian Multiple Comparison Procedure and modeling steps. The modeling step also includes a weighted model averaging approach (Pinheiro et al. (2014) <doi:10.1002/sim.6052>). Estimated dose-response relationships can be bootstrapped and visualized.
Maintained by Stephan Wojciekowski. Last updated 8 days ago.
1.6 match 9 stars 6.94 score 4 scriptsboehringer-ingelheim
tipmap:Tipping Point Analysis for Bayesian Dynamic Borrowing
Tipping point analysis for clinical trials that employ Bayesian dynamic borrowing via robust meta-analytic predictive (MAP) priors. Further functions facilitate expert elicitation of a primary weight of the informative component of the robust MAP prior and computation of operating characteristics. Intended use is the planning, analysis and interpretation of extrapolation studies in pediatric drug development, but applicability is generally wider.
Maintained by Christian Stock. Last updated 12 months ago.
bayesian-borrowingbayesian-methodsclinical-trialevidence-synthesisextrapolationpediatricspharmaceutical-developmentprior-elicitationtipping-pointweighting
1.6 match 2 stars 4.38 score 12 scriptspiusdahinden
expirest:Expiry Estimation Procedures
The Australian Regulatory Guidelines for Prescription Medicines (ARGPM), guidance on "Stability testing for prescription medicines", recommends to predict the shelf life of chemically derived medicines from stability data by taking the worst case situation at batch release into account. Consequently, if a change over time is observed, a release limit needs to be specified. Finding a release limit and the associated shelf life is supported, as well as the standard approach that is recommended by guidance Q1E "Evaluation of stability data" from the International Council for Harmonisation (ICH).
Maintained by Pius Dahinden. Last updated 19 days ago.
1.7 match 3.40 score 6 scriptsmattiminn
dpasurv:Dynamic Path Analysis of Survival Data via Aalen's Additive Hazards Model
Dynamic path analysis with estimation of the corresponding direct, indirect, and total effects, based on Fosen et al., (2006) <doi:10.1007/s10985-006-9004-2>. The main outcome of interest is a counting process from survival analysis (or recurrent events) data. At each time of event, ordinary linear regression is used to estimate the relation between the covariates, while Aalen's additive hazard model is used for the regression of the counting process on the covariates.
Maintained by Matthias Kormaksson. Last updated 6 months ago.
1.6 match 3.36 score 23 scriptsboehringer-ingelheim
BPrinStratTTE:Causal Effects in Principal Strata Defined by Antidrug Antibodies
Bayesian models to estimate causal effects of biological treatments on time-to-event endpoints in clinical trials with principal strata defined by the occurrence of antidrug antibodies. The methodology is based on Frangakis and Rubin (2002) <doi:10.1111/j.0006-341x.2002.00021.x> and Imbens and Rubin (1997) <doi:10.1214/aos/1034276631>, and here adapted to a specific time-to-event setting.
Maintained by Christian Stock. Last updated 11 months ago.
bayesian-methodscausal-inferenceclinical-trialestimandmcmc-methodspharmaceutical-developmentprincipal-stratificationsimulationstantime-to-eventcpp
1.6 match 3.18 scoretcoroller
monitOS:Monitoring Overall Survival in Pivotal Trials in Indolent Cancers
These guidelines are meant to provide a pragmatic, yet rigorous, help to drug developers and decision makers, since they are shaped by three fundamental ingredients: the clinically determined margin of detriment on OS that is unacceptably high (delta null); the benefit on OS that is plausible given the mechanism of action of the novel intervention (delta alt); and the quantity of information (i.e. survival events) it is feasible to accrue given the clinical and drug development setting. The proposed guidelines facilitate transparent discussions between stakeholders focusing on the risks of erroneous decisions and what might be an acceptable trade-off between power and the false positive error rate.
Maintained by Thibaud Coroller. Last updated 12 months ago.
1.5 match 3.00 score 4 scriptsweberse2
OncoBayes2:Bayesian Logistic Regression for Oncology Dose-Escalation Trials
Bayesian logistic regression model with optional EXchangeability-NonEXchangeability parameter modelling for flexible borrowing from historical or concurrent data-sources. The safety model can guide dose-escalation decisions for adaptive oncology Phase I dose-escalation trials which involve an arbitrary number of drugs. Please refer to Neuenschwander et al. (2008) <doi:10.1002/sim.3230> and Neuenschwander et al. (2016) <doi:10.1080/19466315.2016.1174149> for details on the methodology.
Maintained by Sebastian Weber. Last updated 14 days ago.
1.6 match 2.18 score 15 scripts