Showing 150 of total 150 results (show query)

inasevmon

sitree:Single Tree Simulator

Framework to build an individual tree simulator.

Maintained by Ignacio Sevillano. Last updated 1 days ago.

13.4 match 2.78 score 1 dependents

r-forge

RobAStBase:Robust Asymptotic Statistics

Base S4-classes and functions for robust asymptotic statistics.

Maintained by Matthias Kohl. Last updated 2 months ago.

6.3 match 4.96 score 64 scripts 4 dependents

predictiveecology

fireSenseUtils:Utilities for Working With the 'fireSense' Group of 'SpaDES' Modules

Utilities for working with the 'fireSense' group of 'SpaDES' modules.

Maintained by Eliot J B McIntire. Last updated 1 months ago.

1.7 match 1 stars 4.51 score 2 scripts

fmichonneau

foghorn:Summarize CRAN Check Results in the Terminal

The CRAN check results and where your package stands in the CRAN submission queue in your R terminal.

Maintained by Francois Michonneau. Last updated 9 months ago.

feedback

0.6 match 58 stars 8.76 score 21 scripts

usdaforestservice

gdalraster:Bindings to the 'Geospatial Data Abstraction Library' Raster API

Interface to the Raster API of the 'Geospatial Data Abstraction Library' ('GDAL', <https://gdal.org>). Bindings are implemented in an exposed C++ class encapsulating a 'GDALDataset' and its raster band objects, along with several stand-alone functions. These support manual creation of uninitialized datasets, creation from existing raster as template, read/set dataset parameters, low level I/O, color tables, raster attribute tables, virtual raster (VRT), and 'gdalwarp' wrapper for reprojection and mosaicing. Includes 'GDAL' algorithms ('dem_proc()', 'polygonize()', 'rasterize()', etc.), and functions for coordinate transformation and spatial reference systems. Calling signatures resemble the native C, C++ and Python APIs provided by the 'GDAL' project. Includes raster 'calc()' to evaluate a given R expression on a layer or stack of layers, with pixel x/y available as variables in the expression; and raster 'combine()' to identify and count unique pixel combinations across multiple input layers, with optional output of the pixel-level combination IDs. Provides raster display using base 'graphics'. Bindings to a subset of the 'OGR' API are also included for managing vector data sources. Bindings to a subset of the Virtual Systems Interface ('VSI') are also included to support operations on 'GDAL' virtual file systems. These are general utility functions that abstract file system operations on URLs, cloud storage services, 'Zip'/'GZip'/'7z'/'RAR' archives, and in-memory files. 'gdalraster' may be useful in applications that need scalable, low-level I/O, or prefer a direct 'GDAL' API.

Maintained by Chris Toney. Last updated 20 hours ago.

gdalgeospatialrastervectorcpp

0.5 match 42 stars 9.51 score 32 scripts 3 dependents

pik-piam

mrwater:madrat based MAgPIE water Input Data Library

Provides functions for MAgPIE cellular input data generation and stand-alone water calculations.

Maintained by Felicitas Beier. Last updated 5 months ago.

0.5 match 6.45 score 4 scripts 3 dependents

bioc

ViSEAGO:ViSEAGO: a Bioconductor package for clustering biological functions using Gene Ontology and semantic similarity

The main objective of ViSEAGO package is to carry out a data mining of biological functions and establish links between genes involved in the study. We developed ViSEAGO in R to facilitate functional Gene Ontology (GO) analysis of complex experimental design with multiple comparisons of interest. It allows to study large-scale datasets together and visualize GO profiles to capture biological knowledge. The acronym stands for three major concepts of the analysis: Visualization, Semantic similarity and Enrichment Analysis of Gene Ontology. It provides access to the last current GO annotations, which are retrieved from one of NCBI EntrezGene, Ensembl or Uniprot databases for several species. Using available R packages and novel developments, ViSEAGO extends classical functional GO analysis to focus on functional coherence by aggregating closely related biological themes while studying multiple datasets at once. It provides both a synthetic and detailed view using interactive functionalities respecting the GO graph structure and ensuring functional coherence supplied by semantic similarity. ViSEAGO has been successfully applied on several datasets from different species with a variety of biological questions. Results can be easily shared between bioinformaticians and biologists, enhancing reporting capabilities while maintaining reproducibility.

Maintained by Aurelien Brionne. Last updated 2 months ago.

softwareannotationgogenesetenrichmentmultiplecomparisonclusteringvisualization

0.5 match 6.64 score 22 scripts

syoung9836

knfi:Analysis of Korean National Forest Inventory Database

Understanding the current status of forest resources is essential for monitoring changes in forest ecosystems and generating related statistics. In South Korea, the National Forest Inventory (NFI) surveys over 4,500 sample plots nationwide every five years and records 70 items, including forest stand, forest resource, and forest vegetation surveys. Many researchers use NFI as the primary data for research, such as biomass estimation or analyzing the importance value of each species over time and space, depending on the research purpose. However, the large volume of accumulated forest survey data from across the country can make it challenging to manage and utilize such a vast dataset. To address this issue, we developed an R package that efficiently handles large-scale NFI data across time and space. The package offers a comprehensive workflow for NFI data analysis. It starts with data processing, where read_nfi() function reconstructs NFI data according to the researcher's needs while performing basic integrity checks for data quality.Following this, the package provides analytical tools that operate on the verified data. These include functions like summary_nfi() for summary statistics, diversity_nfi() for biodiversity analysis, iv_nfi() for calculating species importance value, and biomass_nfi() and cwd_biomass_nfi() for biomass estimation. Finally, for visualization, the tsvis_nfi() function generates graphs and maps, allowing users to visualize forest ecosystem changes across various spatial and temporal scales. This integrated approach and its specialized functions can enhance the efficiency of processing and analyzing NFI data, providing researchers with insights into forest ecosystems. The NFI Excel files (.xlsx) are not included in the R package and must be downloaded separately. Users can access these NFI Excel files by visiting the Korea Forest Service Forestry Statistics Platform <https://kfss.forest.go.kr/stat/ptl/article/articleList.do?curMenu=11694&bbsId=microdataboard> to download the annual NFI Excel files, which are bundled in .zip archives. Please note that this website is only available in Korean, and direct download links can be found in the notes section of the read_nfi() function.

Maintained by Sinyoung Park. Last updated 4 months ago.

data-analysis-rforestry

0.5 match 1 stars 4.48 score 2 scripts

mondrus96

fabisearch:Change Point Detection in High-Dimensional Time Series Networks

Implementation of the Factorized Binary Search (FaBiSearch) methodology for the estimation of the number and the location of multiple change points in the network (or clustering) structure of multivariate high-dimensional time series. The method is motivated by the detection of change points in functional connectivity networks for functional magnetic resonance imaging (fMRI) data. FaBiSearch uses non-negative matrix factorization (NMF), an unsupervised dimension reduction technique, and a new binary search algorithm to identify multiple change points. It requires minimal assumptions. Lastly, we provide interactive, 3-dimensional, brain-specific network visualization capability in a flexible, stand-alone function. This function can be conveniently used with any node coordinate atlas, and nodes can be color coded according to community membership, if applicable. The output is an elegantly displayed network laid over a cortical surface, which can be rotated in the 3-dimensional space. The main routines of the package are detect.cps(), for multiple change point detection, est.net(), for estimating a network between stationary multivariate time series, net.3dplot(), for plotting the estimated functional connectivity networks, and opt.rank(), for finding the optimal rank in NMF for a given data set. The functions have been extensively tested on simulated multivariate high-dimensional time series data and fMRI data. For details on the FaBiSearch methodology, please see Ondrus et al. (2021) <arXiv:2103.06347>. For a more detailed explanation and applied examples of the fabisearch package, please see Ondrus and Cribben (2022), preprint.

Maintained by Martin Ondrus. Last updated 7 months ago.

0.5 match 1 stars 3.00 score 2 scripts

cran

bgw:Bunch-Gay-Welsch Statistical Estimation

Performs statistical estimation and inference-related computations by accessing and executing modified versions of 'Fortran' subroutines originally published in the Association for Computing Machinery (ACM) journal Transactions on Mathematical Software (TOMS) by Bunch, Gay and Welsch (1993) <doi:10.1145/151271.151279>. The acronym 'BGW' (from the authors' last names) will be used when making reference to technical content (e.g., algorithm, methodology) that originally appeared in ACM TOMS. A key feature of BGW is that it exploits the special structure of statistical estimation problems within a trust-region-based optimization approach to produce an estimation algorithm that is much more effective than the usual practice of using optimization methods and codes originally developed for general optimization. The 'bgw' package bundles 'R' wrapper (and related) functions with modified 'Fortran' source code so that it can be compiled and linked in the 'R' environment for fast execution. This version implements a function ('bgw_mle.R') that performs maximum likelihood estimation (MLE) for a user-provided model object that computes probabilities (a.k.a. probability densities). The original motivation for producing this package was to provide fast, efficient, and reliable MLE for discrete choice models that can be called from the 'Apollo' choice modelling 'R' package ( see <http://www.apollochoicemodelling.com>). Starting with the release of Apollo 3.0, BGW is the default estimation package. However, estimation can also be performed using BGW in a stand-alone fashion without using 'Apollo' (as shown in simple examples included in the package). Note also that BGW capabilities are not limited to MLE, and future extension to other estimators (e.g., nonlinear least squares, generalized method of moments, etc.) is possible. The 'Fortran' code included in 'bgw' was modified by one of the original BGW authors (Bunch) under his rights as confirmed by direct consultation with the ACM Intellectual Property and Rights Manager. See <https://authors.acm.org/author-resources/author-rights>. The main requirement is clear citation of the original publication (see above).

Maintained by David S. Bunch. Last updated 12 months ago.

fortran

0.5 match 2.52 score 1 dependents

bodokirsch

subscreen:Systematic Screening of Study Data for Subgroup Effects

Identifying outcome relevant subgroups has now become as simple as possible! The formerly lengthy and tedious search for the needle in a haystack will be replaced by a single, comprehensive and coherent presentation. The central result of a subgroup screening is a diagram in which each single dot stands for a subgroup. The diagram may show thousands of them. The position of the dot in the diagram is determined by the sample size of the subgroup and the statistical measure of the treatment effect in that subgroup. The sample size is shown on the horizontal axis while the treatment effect is displayed on the vertical axis. Furthermore, the diagram shows the line of no effect and the overall study results. For small subgroups, which are found on the left side of the plot, larger random deviations from the mean study effect are expected, while for larger subgroups only small deviations from the study mean can be expected to be chance findings. So for a study with no conspicuous subgroup effects, the dots in the figure are expected to form a kind of funnel. Any deviations from this funnel shape hint to conspicuous subgroups. This approach was presented in Muysers (2020) <doi:10.1007/s43441-019-00082-6> and referenced in Ballarini (2020) <doi:10.1002/pst.2012>. New to version 3 is the Automatic Screening of one- or MUlti-factorial Subgroups (ASMUS) for documentation of the structured review of subgroup findings.

Maintained by Bodo Kirsch. Last updated 3 years ago.

0.5 match 2.00 score 8 scripts