Showing 200 of total 680 results (show query)

mlr-org

mlr3extralearners:Extra Learners For mlr3

Extra learners for use in mlr3.

Maintained by Sebastian Fischer. Last updated 4 months ago.

machine-learningmlr3

25.3 match 94 stars 9.16 score 474 scripts

doserjef

rFIA:Estimation of Forest Variables using the FIA Database

The goal of 'rFIA' is to increase the accessibility and use of the United States Forest Services (USFS) Forest Inventory and Analysis (FIA) Database by providing a user-friendly, open source toolkit to easily query and analyze FIA Data. Designed to accommodate a wide range of potential user objectives, 'rFIA' simplifies the estimation of forest variables from the FIA Database and allows all R users (experts and newcomers alike) to unlock the flexibility inherent to the Enhanced FIA design. Specifically, 'rFIA' improves accessibility to the spatial-temporal estimation capacity of the FIA Database by producing space-time indexed summaries of forest variables within user-defined population boundaries. Direct integration with other popular R packages (e.g., 'dplyr', 'tidyr', and 'sf') facilitates efficient space-time query and data summary, and supports common data representations and API design. The package implements design-based estimation procedures outlined by Bechtold & Patterson (2005) <doi:10.2737/SRS-GTR-80>, and has been validated against estimates and sampling errors produced by FIA 'EVALIDator'. Current development is focused on the implementation of spatially-enabled model-assisted and model-based estimators to improve population, change, and ratio estimates.

Maintained by Jeffrey Doser. Last updated 7 days ago.

compute-estimatesfiafia-databasefia-datamartforest-inventoryforest-variablesinventoriesspace-timespatial

25.9 match 49 stars 5.93 score

guido-s

netmeta:Network Meta-Analysis using Frequentist Methods

A comprehensive set of functions providing frequentist methods for network meta-analysis (Balduzzi et al., 2023) <doi:10.18637/jss.v106.i02> and supporting Schwarzer et al. (2015) <doi:10.1007/978-3-319-21416-0>, Chapter 8 "Network Meta-Analysis": - frequentist network meta-analysis following Rücker (2012) <doi:10.1002/jrsm.1058>; - additive network meta-analysis for combinations of treatments (Rücker et al., 2020) <doi:10.1002/bimj.201800167>; - network meta-analysis of binary data using the Mantel-Haenszel or non-central hypergeometric distribution method (Efthimiou et al., 2019) <doi:10.1002/sim.8158>, or penalised logistic regression (Evrenoglou et al., 2022) <doi:10.1002/sim.9562>; - rankograms and ranking of treatments by the Surface under the cumulative ranking curve (SUCRA) (Salanti et al., 2013) <doi:10.1016/j.jclinepi.2010.03.016>; - ranking of treatments using P-scores (frequentist analogue of SUCRAs without resampling) according to Rücker & Schwarzer (2015) <doi:10.1186/s12874-015-0060-8>; - split direct and indirect evidence to check consistency (Dias et al., 2010) <doi:10.1002/sim.3767>, (Efthimiou et al., 2019) <doi:10.1002/sim.8158>; - league table with network meta-analysis results; - 'comparison-adjusted' funnel plot (Chaimani & Salanti, 2012) <doi:10.1002/jrsm.57>; - net heat plot and design-based decomposition of Cochran's Q according to Krahn et al. (2013) <doi:10.1186/1471-2288-13-35>; - measures characterizing the flow of evidence between two treatments by König et al. (2013) <doi:10.1002/sim.6001>; - automated drawing of network graphs described in Rücker & Schwarzer (2016) <doi:10.1002/jrsm.1143>; - partial order of treatment rankings ('poset') and Hasse diagram for 'poset' (Carlsen & Bruggemann, 2014) <doi:10.1002/cem.2569>; (Rücker & Schwarzer, 2017) <doi:10.1002/jrsm.1270>; - contribution matrix as described in Papakonstantinou et al. (2018) <doi:10.12688/f1000research.14770.3> and Davies et al. (2022) <doi:10.1002/sim.9346>; - subgroup network meta-analysis.

Maintained by Guido Schwarzer. Last updated 13 hours ago.

meta-analysisnetwork-meta-analysisrstudio

12.1 match 33 stars 11.82 score 199 scripts 10 dependents

lleisong

itsdm:Isolation Forest-Based Presence-Only Species Distribution Modeling

Collection of R functions to do purely presence-only species distribution modeling with isolation forest (iForest) and its variations such as Extended isolation forest and SCiForest. See the details of these methods in references: Liu, F.T., Ting, K.M. and Zhou, Z.H. (2008) <doi:10.1109/ICDM.2008.17>, Hariri, S., Kind, M.C. and Brunner, R.J. (2019) <doi:10.1109/TKDE.2019.2947676>, Liu, F.T., Ting, K.M. and Zhou, Z.H. (2010) <doi:10.1007/978-3-642-15883-4_18>, Guha, S., Mishra, N., Roy, G. and Schrijvers, O. (2016) <https://proceedings.mlr.press/v48/guha16.html>, Cortes, D. (2021) <arXiv:2110.13402>. Additionally, Shapley values are used to explain model inputs and outputs. See details in references: Shapley, L.S. (1953) <doi:10.1515/9781400881970-018>, Lundberg, S.M. and Lee, S.I. (2017) <https://dl.acm.org/doi/abs/10.5555/3295222.3295230>, Molnar, C. (2020) <ISBN:978-0-244-76852-2>, Štrumbelj, E. and Kononenko, I. (2014) <doi:10.1007/s10115-013-0679-x>. itsdm also provides functions to diagnose variable response, analyze variable importance, draw spatial dependence of variables and examine variable contribution. As utilities, the package includes a few functions to download bioclimatic variables including 'WorldClim' version 2.0 (see Fick, S.E. and Hijmans, R.J. (2017) <doi:10.1002/joc.5086>) and 'CMCC-BioClimInd' (see Noce, S., Caporaso, L. and Santini, M. (2020) <doi:10.1038/s41597-020-00726-5>.

Maintained by Lei Song. Last updated 2 years ago.

isolation-forestoutlier-detectionpresence-onlymodelshapley-valuespecies-distribution-modelling

16.2 match 4 stars 5.59 score 65 scripts

syoung9836

knfi:Analysis of Korean National Forest Inventory Database

Understanding the current status of forest resources is essential for monitoring changes in forest ecosystems and generating related statistics. In South Korea, the National Forest Inventory (NFI) surveys over 4,500 sample plots nationwide every five years and records 70 items, including forest stand, forest resource, and forest vegetation surveys. Many researchers use NFI as the primary data for research, such as biomass estimation or analyzing the importance value of each species over time and space, depending on the research purpose. However, the large volume of accumulated forest survey data from across the country can make it challenging to manage and utilize such a vast dataset. To address this issue, we developed an R package that efficiently handles large-scale NFI data across time and space. The package offers a comprehensive workflow for NFI data analysis. It starts with data processing, where read_nfi() function reconstructs NFI data according to the researcher's needs while performing basic integrity checks for data quality.Following this, the package provides analytical tools that operate on the verified data. These include functions like summary_nfi() for summary statistics, diversity_nfi() for biodiversity analysis, iv_nfi() for calculating species importance value, and biomass_nfi() and cwd_biomass_nfi() for biomass estimation. Finally, for visualization, the tsvis_nfi() function generates graphs and maps, allowing users to visualize forest ecosystem changes across various spatial and temporal scales. This integrated approach and its specialized functions can enhance the efficiency of processing and analyzing NFI data, providing researchers with insights into forest ecosystems. The NFI Excel files (.xlsx) are not included in the R package and must be downloaded separately. Users can access these NFI Excel files by visiting the Korea Forest Service Forestry Statistics Platform <https://kfss.forest.go.kr/stat/ptl/article/articleList.do?curMenu=11694&bbsId=microdataboard> to download the annual NFI Excel files, which are bundled in .zip archives. Please note that this website is only available in Korean, and direct download links can be found in the notes section of the read_nfi() function.

Maintained by Sinyoung Park. Last updated 3 months ago.

data-analysis-rforestry

19.4 match 1 stars 4.48 score 2 scripts

e-sensing

sits:Satellite Image Time Series Analysis for Earth Observation Data Cubes

An end-to-end toolkit for land use and land cover classification using big Earth observation data, based on machine learning methods applied to satellite image data cubes, as described in Simoes et al (2021) <doi:10.3390/rs13132428>. Builds regular data cubes from collections in AWS, Microsoft Planetary Computer, Brazil Data Cube, Copernicus Data Space Environment (CDSE), Digital Earth Africa, Digital Earth Australia, NASA HLS using the Spatio-temporal Asset Catalog (STAC) protocol (<https://stacspec.org/>) and the 'gdalcubes' R package developed by Appel and Pebesma (2019) <doi:10.3390/data4030092>. Supports visualization methods for images and time series and smoothing filters for dealing with noisy time series. Includes functions for quality assessment of training samples using self-organized maps as presented by Santos et al (2021) <doi:10.1016/j.isprsjprs.2021.04.014>. Includes methods to reduce training samples imbalance proposed by Chawla et al (2002) <doi:10.1613/jair.953>. Provides machine learning methods including support vector machines, random forests, extreme gradient boosting, multi-layer perceptrons, temporal convolutional neural networks proposed by Pelletier et al (2019) <doi:10.3390/rs11050523>, and temporal attention encoders by Garnot and Landrieu (2020) <doi:10.48550/arXiv.2007.00586>. Supports GPU processing of deep learning models using torch <https://torch.mlverse.org/>. Performs efficient classification of big Earth observation data cubes and includes functions for post-classification smoothing based on Bayesian inference as described by Camara et al (2024) <doi:10.3390/rs16234572>, and methods for active learning and uncertainty assessment. Supports region-based time series analysis using package supercells <https://jakubnowosad.com/supercells/>. Enables best practices for estimating area and assessing accuracy of land change as recommended by Olofsson et al (2014) <doi:10.1016/j.rse.2014.02.015>. Minimum recommended requirements: 16 GB RAM and 4 CPU dual-core.

Maintained by Gilberto Camara. Last updated 30 days ago.

big-earth-datacbersearth-observationeo-datacubesgeospatialimage-time-seriesland-cover-classificationlandsatplanetary-computerr-spatialremote-sensingrspatialsatellite-image-time-seriessatellite-imagerysentinel-2stac-apistac-catalogcpp

7.7 match 494 stars 9.50 score 384 scripts

shixiangwang

ezcox:Easily Process a Batch of Cox Models

A tool to operate a batch of univariate or multivariate Cox models and return tidy result.

Maintained by Shixiang Wang. Last updated 1 years ago.

batch-processingcox-model

8.8 match 21 stars 7.22 score 44 scripts 1 dependents

natydasilva

PPforest:Projection Pursuit Classification Forest

Implements projection pursuit forest algorithm for supervised classification.

Maintained by Natalia da Silva. Last updated 8 months ago.

openblascpp

10.2 match 18 stars 5.53 score 19 scripts

insightsengineering

tern:Create Common TLGs Used in Clinical Trials

Table, Listings, and Graphs (TLG) library for common outputs used in clinical trials.

Maintained by Joe Zhu. Last updated 2 months ago.

clinical-trialsgraphslistingsnestoutputstables

3.7 match 79 stars 12.62 score 186 scripts 9 dependents

cran

CornerstoneR:Collection of Scripts for Interface Between 'Cornerstone' and 'R'

Collection of generic 'R' scripts which enable you to use existing 'R' routines in 'Cornerstone'. . The desktop application 'Cornerstone' (<https://www.camline.com/en/products/cornerstone/cornerstone-core.html>) is a data analysis software provided by 'camLine' that empowers engineering teams to find solutions even faster. The engineers incorporate intensified hands-on statistics into their projects. They benefit from an intuitive and uniquely designed graphical Workmap concept: you design experiments (DoE) and explore data, analyze dependencies, and find answers you can act upon, immediately, interactively, and without any programming. . While 'Cornerstone's' interface to the statistical programming language 'R' has been available since version 6.0, the latest interface with 'R' is even much more efficient. 'Cornerstone' release 7.1.1 allows you to integrate user defined 'R' packages directly into the standard 'Cornerstone' GUI. Your engineering team stays in 'Cornerstone's' graphical working environment and can apply 'R' routines, immediately and without the need to deal with programming code. Additionally, your 'R' programming team develops corresponding 'R' packages detached from 'Cornerstone' in their favorite 'R' environment. . Learn how to use 'R' packages in 'Cornerstone' 7.1.1 on 'camLineTV' YouTube channel (<https://www.youtube.com/watch?v=HEQHwq_laXU>) (available in German).

Maintained by Gerrith Djaja. Last updated 5 years ago.

11.7 match 3.54 score

loukiaspin

rnmamod:Bayesian Network Meta-Analysis with Missing Participants

A comprehensive suite of functions to perform and visualise pairwise and network meta-analysis with aggregate binary or continuous missing participant outcome data. The package covers core Bayesian one-stage models implemented in a systematic review with multiple interventions, including fixed-effect and random-effects network meta-analysis, meta-regression, evaluation of the consistency assumption via the node-splitting approach and the unrelated mean effects model (original and revised model proposed by Spineli, (2022) <doi:10.1177/0272989X211068005>), and sensitivity analysis (see Spineli et al., (2021) <doi:10.1186/s12916-021-02195-y>). Missing participant outcome data are addressed in all models of the package (see Spineli, (2019) <doi:10.1186/s12874-019-0731-y>, Spineli et al., (2019) <doi:10.1002/sim.8207>, Spineli, (2019) <doi:10.1016/j.jclinepi.2018.09.002>, and Spineli et al., (2021) <doi:10.1002/jrsm.1478>). The robustness to primary analysis results can also be investigated using a novel intuitive index (see Spineli et al., (2021) <doi:10.1177/0962280220983544>). Methods to evaluate the transitivity assumption quantitatively are provided (see Spineli, (2024) <doi:10.1186/s12874-024-02436-7>). A novel index to facilitate interpretation of local inconsistency is also available (see Spineli, (2024) <doi:0.1186/s13643-024-02680-4>) The package also offers a rich, user-friendly visualisation toolkit that aids in appraising and interpreting the results thoroughly and preparing the manuscript for journal submission. The visualisation tools comprise the network plot, forest plots, panel of diagnostic plots, heatmaps on the extent of missing participant outcome data in the network, league heatmaps on estimation and prediction, rankograms, Bland-Altman plot, leverage plot, deviance scatterplot, heatmap of robustness, barplot of Kullback-Leibler divergence, heatmap of comparison dissimilarities and dendrogram of comparison clustering. The package also allows the user to export the results to an Excel file at the working directory.

Maintained by Loukia Spineli. Last updated 8 days ago.

jagscpp

5.6 match 5 stars 6.64 score 12 scripts

romanhornung

diversityForest:Innovative Complex Split Procedures in Random Forests Through Candidate Split Sampling

Implements interaction forests [1], which are specific diversity forests and the basic form of diversity forests that uses univariable, binary splitting [2]. Interaction forests (IFs) are ensembles of decision trees that model quantitative and qualitative interaction effects using bivariable splitting. IFs come with the Effect Importance Measure (EIM), which can be used to identify variable pairs that feature quantitative and qualitative interaction effects with high predictive relevance. IFs and EIM focus on well interpretable forms of interactions. The package also offers plot functions for visualising the estimated forms of interaction effects. Categorical, metric, and survival outcomes are supported. This is a fork of the R package 'ranger' (main author: Marvin N. Wright) that implements random forests using an efficient C++ implementation. References: [1] Hornung, R. & Boulesteix, A.-L. (2022) Interaction Forests: Identifying and exploiting interpretable quantitative and qualitative interaction effects. Computational Statistics & Data Analysis 171:107460, <doi:10.1016/j.csda.2022.107460>. [2] Hornung, R. (2022) Diversity forests: Using split sampling to enable innovative complex split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979-021-00920-1>.

Maintained by Roman Hornung. Last updated 2 years ago.

cpp

18.0 match 2.00 score 5 scripts

ropensci

git2rdata:Store and Retrieve Data.frames in a Git Repository

The git2rdata package is an R package for writing and reading dataframes as plain text files. A metadata file stores important information. 1) Storing metadata allows to maintain the classes of variables. By default, git2rdata optimizes the data for file storage. The optimization is most effective on data containing factors. The optimization makes the data less human readable. The user can turn this off when they prefer a human readable format over smaller files. Details on the implementation are available in vignette("plain_text", package = "git2rdata"). 2) Storing metadata also allows smaller row based diffs between two consecutive commits. This is a useful feature when storing data as plain text files under version control. Details on this part of the implementation are available in vignette("version_control", package = "git2rdata"). Although we envisioned git2rdata with a git workflow in mind, you can use it in combination with other version control systems like subversion or mercurial. 3) git2rdata is a useful tool in a reproducible and traceable workflow. vignette("workflow", package = "git2rdata") gives a toy example. 4) vignette("efficiency", package = "git2rdata") provides some insight into the efficiency of file storage, git repository size and speed for writing and reading.

Maintained by Thierry Onkelinx. Last updated 2 months ago.

reproducible-researchversion-control

3.1 match 99 stars 10.03 score 216 scripts 4 dependents