Showing 200 of total 1070 results (show query)

r-dbi

odbc:Connect to ODBC Compatible Databases (using the DBI Interface)

A DBI-compatible interface to ODBC databases.

Maintained by Hadley Wickham. Last updated 13 days ago.

databaseodbcunixodbccpp

21.2 match 396 stars 16.22 score 2.9k scripts 22 dependents

bioc

GRaNIE:GRaNIE: Reconstruction cell type specific gene regulatory networks including enhancers using single-cell or bulk chromatin accessibility and RNA-seq data

Genetic variants associated with diseases often affect non-coding regions, thus likely having a regulatory role. To understand the effects of genetic variants in these regulatory regions, identifying genes that are modulated by specific regulatory elements (REs) is crucial. The effect of gene regulatory elements, such as enhancers, is often cell-type specific, likely because the combinations of transcription factors (TFs) that are regulating a given enhancer have cell-type specific activity. This TF activity can be quantified with existing tools such as diffTF and captures differences in binding of a TF in open chromatin regions. Collectively, this forms a gene regulatory network (GRN) with cell-type and data-specific TF-RE and RE-gene links. Here, we reconstruct such a GRN using single-cell or bulk RNAseq and open chromatin (e.g., using ATACseq or ChIPseq for open chromatin marks) and optionally (Capture) Hi-C data. Our network contains different types of links, connecting TFs to regulatory elements, the latter of which is connected to genes in the vicinity or within the same chromatin domain (TAD). We use a statistical framework to assign empirical FDRs and weights to all links using a permutation-based approach.

Maintained by Christian Arnold. Last updated 5 months ago.

softwaregeneexpressiongeneregulationnetworkinferencegenesetenrichmentbiomedicalinformaticsgeneticstranscriptomicsatacseqrnaseqgraphandnetworkregressiontranscriptionchipseq

48.9 match 5.40 score 24 scripts

henrikbengtsson

R.utils:Various Programming Utilities

Utility functions useful when programming and developing R packages.

Maintained by Henrik Bengtsson. Last updated 1 years ago.

18.2 match 63 stars 13.74 score 5.7k scripts 814 dependents

prioritizr

prioritizr:Systematic Conservation Prioritization in R

Systematic conservation prioritization using mixed integer linear programming (MILP). It provides a flexible interface for building and solving conservation planning problems. Once built, conservation planning problems can be solved using a variety of commercial and open-source exact algorithm solvers. By using exact algorithm solvers, solutions can be generated that are guaranteed to be optimal (or within a pre-specified optimality gap). Furthermore, conservation problems can be constructed to optimize the spatial allocation of different management actions or zones, meaning that conservation practitioners can identify solutions that benefit multiple stakeholders. To solve large-scale or complex conservation planning problems, users should install the Gurobi optimization software (available from <https://www.gurobi.com/>) and the 'gurobi' R package (see Gurobi Installation Guide vignette for details). Users can also install the IBM CPLEX software (<https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer>) and the 'cplexAPI' R package (available at <https://github.com/cran/cplexAPI>). Additionally, the 'rcbc' R package (available at <https://github.com/dirkschumacher/rcbc>) can be used to generate solutions using the CBC optimization software (<https://github.com/coin-or/Cbc>). For further details, see Hanson et al. (2025) <doi:10.1111/cobi.14376>.

Maintained by Richard Schuster. Last updated 11 days ago.

biodiversityconservationconservation-planneroptimizationprioritizationsolverspatialcpp

17.0 match 124 stars 11.82 score 584 scripts 2 dependents

spatstat

spatstat.linnet:Linear Networks Functionality of the 'spatstat' Family

Defines types of spatial data on a linear network and provides functionality for geometrical operations, data analysis and modelling of data on a linear network, in the 'spatstat' family of packages. Contains definitions and support for linear networks, including creation of networks, geometrical measurements, topological connectivity, geometrical operations such as inserting and deleting vertices, intersecting a network with another object, and interactive editing of networks. Data types defined on a network include point patterns, pixel images, functions, and tessellations. Exploratory methods include kernel estimation of intensity on a network, K-functions and pair correlation functions on a network, simulation envelopes, nearest neighbour distance and empty space distance, relative risk estimation with cross-validated bandwidth selection. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the function lppm() similar to glm(). Only Poisson models are implemented so far. Models may involve dependence on covariates and dependence on marks. Models are fitted by maximum likelihood. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots. Random point patterns on a network can be generated using a variety of models.

Maintained by Adrian Baddeley. Last updated 2 months ago.

density-estimationheat-equationkernel-density-estimationnetwork-analysispoint-processesspatial-data-analysisstatistical-analysisstatistical-inferencestatistical-models

16.1 match 6 stars 9.64 score 35 scripts 43 dependents

open-eo

openeo:Client Interface for 'openEO' Servers

Access data and processing functionalities of 'openEO' compliant back-ends in R.

Maintained by Florian Lahn. Last updated 2 months ago.

openeoopeneo-user

16.0 match 64 stars 8.65 score 128 scripts

jumpingrivers

audit.connect:Posit Connect Health Check

Posit Connect Health Check. Deploys various content types to assess whether Connect is functioning correctly.

Maintained by Jumping Rivers. Last updated 1 months ago.

43.4 match 2.70 score 1 scripts

nflverse

nflreadr:Download 'nflverse' Data

A minimal package for downloading data from 'GitHub' repositories of the 'nflverse' project.

Maintained by Tan Ho. Last updated 4 months ago.

nflnflfastrnflversesports-data

8.9 match 66 stars 12.46 score 476 scripts 10 dependents

nabod0815

ConNEcT:Contingency Measure-Based Networks for Binary Time Series

The ConNEcT approach investigates the pairwise association strength of binary time series by calculating contingency measures and depicts the results in a network. The package includes features to explore and visualize the data. To calculate the pairwise concurrent or temporal sequenced relationship between the variables, the package provides seven contingency measures (proportion of agreement, classical & corrected Jaccard, Cohen's kappa, phi correlation coefficient, odds ratio, and log odds ratio), however, others can easily be implemented. The package also includes non-parametric significance tests, that can be applied to test whether the contingency value quantifying the relationship between the variables is significantly higher than chance level. Most importantly this test accounts for auto-dependence and relative frequency.See Bodner et al.(2021) <doi: 10.1111/bmsp.12222>.Finally, a network can be drawn. Variables depicted the nodes of the network, with the node size adapted to the prevalence. The association strength between the variables defines the undirected (concurrent) or directed (temporal sequenced) links between the nodes. The results of the non-parametric significance test can be included by depicting either all links or only the significant ones. Tutorial see Bodner et al.(2021) <doi:10.3758/s13428-021-01760-w>.

Maintained by Nadja Bodner. Last updated 3 years ago.

61.1 match 1.70 score 2 scripts

cran

RODBC:ODBC Database Access

An ODBC database interface.

Maintained by Brian Ripley. Last updated 3 months ago.

unixodbc

13.5 match 10 stars 7.41 score 38 dependents

bioc

RBGL:An interface to the BOOST graph library

A fairly extensive and comprehensive interface to the graph algorithms contained in the BOOST library.

Maintained by Bioconductor Package Maintainer. Last updated 4 months ago.

graphandnetworknetworkcpp

8.9 match 8.59 score 320 scripts 132 dependents

patzaw

BED:Biological Entity Dictionary (BED)

An interface for the 'Neo4j' database providing mapping between different identifiers of biological entities. This Biological Entity Dictionary (BED) has been developed to address three main challenges. The first one is related to the completeness of identifier mappings. Indeed, direct mapping information provided by the different systems are not always complete and can be enriched by mappings provided by other resources. More interestingly, direct mappings not identified by any of these resources can be indirectly inferred by using mappings to a third reference. For example, many human Ensembl gene ID are not directly mapped to any Entrez gene ID but such mappings can be inferred using respective mappings to HGNC ID. The second challenge is related to the mapping of deprecated identifiers. Indeed, entity identifiers can change from one resource release to another. The identifier history is provided by some resources, such as Ensembl or the NCBI, but it is generally not used by mapping tools. The third challenge is related to the automation of the mapping process according to the relationships between the biological entities of interest. Indeed, mapping between gene and protein ID scopes should not be done the same way than between two scopes regarding gene ID. Also, converting identifiers from different organisms should be possible using gene orthologs information. The method has been published by Godard and van Eyll (2018) <doi:10.12688/f1000research.13925.3>.

Maintained by Patrice Godard. Last updated 3 months ago.

9.6 match 8 stars 6.85 score 25 scripts

bioc

Biobase:Biobase: Base functions for Bioconductor

Functions that are needed by many other packages or which replace R functions.

Maintained by Bioconductor Package Maintainer. Last updated 5 months ago.

infrastructurebioconductor-packagecore-package

3.5 match 9 stars 16.45 score 6.6k scripts 1.8k dependents

r-lib

ps:List, Query, Manipulate System Processes

List, query and manipulate all system processes, on 'Windows', 'Linux' and 'macOS'.

Maintained by Gábor Csárdi. Last updated 16 days ago.

3.8 match 79 stars 15.09 score 108 scripts 1.5k dependents

rblp

Rblpapi:R Interface to 'Bloomberg'

An R Interface to 'Bloomberg' is provided via the 'Blp API'.

Maintained by Dirk Eddelbuettel. Last updated 4 days ago.

bloombergbloomberg-apircppcpp

5.7 match 169 stars 9.43 score 115 scripts

thinkr-open

lozen:Management tools for missions

Management tools for missions (internal and external). Includes weekly, GL projects, etc.

Maintained by Sébastien Rochette. Last updated 12 months ago.

experimental

8.0 match 7 stars 5.42 score 14 scripts

ropensci

rzmq:R Bindings for 'ZeroMQ'

Interface to the 'ZeroMQ' lightweight messaging kernel (see <https://zeromq.org/> for more information).

Maintained by Jeroen Ooms. Last updated 3 months ago.

zeromqzmqzeromq3cpp

5.6 match 84 stars 7.08 score 81 scripts

laurafancello

net4pg:Handle Ambiguity of Protein Identifications from Shotgun Proteomics

In shotgun proteomics, shared peptides (i.e., peptides that might originate from different proteins sharing homology, from different proteoforms due to alternative mRNA splicing, post-translational modifications, proteolytic cleavages, and/or allelic variants) represent a major source of ambiguity in protein identifications. The 'net4pg' package allows to assess and handle ambiguity of protein identifications. It implements methods for two main applications. First, it allows to represent and quantify ambiguity of protein identifications by means of graph connected components (CCs). In graph theory, CCs are defined as the largest subgraphs in which any two vertices are connected to each other by a path and not connected to any other of the vertices in the supergraph. Here, proteins sharing one or more peptides are thus gathered in the same CC (multi-protein CC), while unambiguous protein identifications constitute CCs with a single protein vertex (single-protein CCs). Therefore, the proportion of single-protein CCs and the size of multi-protein CCs can be used to measure the level of ambiguity of protein identifications. The package implements a strategy to efficiently calculate graph connected components on large datasets and allows to visually inspect them. Secondly, the 'net4pg' package allows to exploit the increasing availability of matched transcriptomic and proteomic datasets to reduce ambiguity of protein identifications. More precisely, it implement a transcriptome-based filtering strategy fundamentally consisting in the removal of those proteins whose corresponding transcript is not expressed in the sample-matched transcriptome. The underlying assumption is that, according to the central dogma of biology, there can be no proteins without the corresponding transcript. Most importantly, the package allows to visually inspect the effect of the filtering on protein identifications and quantify ambiguity before and after filtering by means of graph connected components. As such, it constitutes a reproducible and transparent method to exploit transcriptome information to enhance protein identifications. All methods implemented in the 'net4pg' package are fully described in Fancello and Burger (2022) <doi:10.1186/s13059-022-02701-2>.

Maintained by Laura Fancello. Last updated 3 years ago.

8.5 match 2 stars 4.00 score 3 scripts

graemetlloyd

Claddis:Measuring Morphological Diversity and Evolutionary Tempo

Measures morphological diversity from discrete character data and estimates evolutionary tempo on phylogenetic trees. Imports morphological data from #NEXUS (Maddison et al. (1997) <doi:10.1093/sysbio/46.4.590>) format with read_nexus_matrix(), and writes to both #NEXUS and TNT format (Goloboff et al. (2008) <doi:10.1111/j.1096-0031.2008.00217.x>). Main functions are test_rates(), which implements AIC and likelihood ratio tests for discrete character rates introduced across Lloyd et al. (2012) <doi:10.1111/j.1558-5646.2011.01460.x>, Brusatte et al. (2014) <doi:10.1016/j.cub.2014.08.034>, Close et al. (2015) <doi:10.1016/j.cub.2015.06.047>, and Lloyd (2016) <doi:10.1111/bij.12746>, and calculate_morphological_distances(), which implements multiple discrete character distance metrics from Gower (1971) <doi:10.2307/2528823>, Wills (1998) <doi:10.1006/bijl.1998.0255>, Lloyd (2016) <doi:10.1111/bij.12746>, and Hopkins and St John (2018) <doi:10.1098/rspb.2018.1784>. This also includes the GED correction from Lehmann et al. (2019) <doi:10.1111/pala.12430>. Multiple functions implement morphospace plots: plot_chronophylomorphospace() implements Sakamoto and Ruta (2012) <doi:10.1371/journal.pone.0039752>, plot_morphospace() implements Wills et al. (1994) <doi:10.1017/S009483730001263X>, plot_changes_on_tree() implements Wang and Lloyd (2016) <doi:10.1098/rspb.2016.0214>, and plot_morphospace_stack() implements Foote (1993) <doi:10.1017/S0094837300015864>. Other functions include safe_taxonomic_reduction(), which implements Wilkinson (1995) <doi:10.1093/sysbio/44.4.501>, map_dollo_changes() implements the Dollo stochastic character mapping of Tarver et al. (2018) <doi:10.1093/gbe/evy096>, and estimate_ancestral_states() implements the ancestral state options of Lloyd (2018) <doi:10.1111/pala.12380>. calculate_tree_length() and reconstruct_ancestral_states() implements the generalised algorithms from Swofford and Maddison (1992; no doi).

Maintained by Graeme T. Lloyd. Last updated 6 months ago.

4.3 match 13 stars 7.81 score 77 scripts 2 dependents

prioriactions

prioriactions:Multi-Action Conservation Planning

This uses a mixed integer mathematical programming (MIP) approach for building and solving multi-action planning problems, where the goal is to find an optimal combination of management actions that abate threats, in an efficient way while accounting for spatial aspects. Thus, optimizing the connectivity and conservation effectiveness of the prioritized units and of the deployed actions. The package is capable of handling different commercial (gurobi, CPLEX) and non-commercial (symphony, CBC) MIP solvers. Gurobi optimization solver can be installed using comprehensive instructions in the 'gurobi' installation vignette of the prioritizr package (available in <https://prioritizr.net/articles/gurobi_installation_guide.html>). Instead, 'CPLEX' optimization solver can be obtain from IBM CPLEX web page (available here <https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio>). Additionally, the 'rcbc' R package (available at <https://github.com/dirkschumacher/rcbc>) can be used to obtain solutions using the CBC optimization software (<https://github.com/coin-or/Cbc>). Methods used in the package refers to Salgado-Rojas et al. (2020) <doi:10.1016/j.ecolmodel.2019.108901>, Beyer et al. (2016) <doi:10.1016/j.ecolmodel.2016.02.005>, Cattarino et al. (2015) <doi:10.1371/journal.pone.0128027> and Watts et al. (2009) <doi:10.1016/j.envsoft.2009.06.005>. See the prioriactions website for more information, documentations and examples.

Maintained by Jose Salgado-Rojas. Last updated 2 years ago.

conservationconservation-planoptimizationprioritizationthreatscpp

5.9 match 10 stars 5.40 score 6 scripts