Showing 200 of total 1256 results (show query)

cran

PMCMRplus:Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended

For one-way layout experiments the one-way ANOVA can be performed as an omnibus test. All-pairs multiple comparisons tests (Tukey-Kramer test, Scheffe test, LSD-test) and many-to-one tests (Dunnett test) for normally distributed residuals and equal within variance are available. Furthermore, all-pairs tests (Games-Howell test, Tamhane's T2 test, Dunnett T3 test, Ury-Wiggins-Hochberg test) and many-to-one (Tamhane-Dunnett Test) for normally distributed residuals and heterogeneous variances are provided. Van der Waerden's normal scores test for omnibus, all-pairs and many-to-one tests is provided for non-normally distributed residuals and homogeneous variances. The Kruskal-Wallis, BWS and Anderson-Darling omnibus test and all-pairs tests (Nemenyi test, Dunn test, Conover test, Dwass-Steele-Critchlow- Fligner test) as well as many-to-one (Nemenyi test, Dunn test, U-test) are given for the analysis of variance by ranks. Non-parametric trend tests (Jonckheere test, Cuzick test, Johnson-Mehrotra test, Spearman test) are included. In addition, a Friedman-test for one-way ANOVA with repeated measures on ranks (CRBD) and Skillings-Mack test for unbalanced CRBD is provided with consequent all-pairs tests (Nemenyi test, Siegel test, Miller test, Conover test, Exact test) and many-to-one tests (Nemenyi test, Demsar test, Exact test). A trend can be tested with Pages's test. Durbin's test for a two-way balanced incomplete block design (BIBD) is given in this package as well as Gore's test for CRBD with multiple observations per cell is given. Outlier tests, Mandel's k- and h statistic as well as functions for Type I error and Power analysis as well as generic summary, print and plot methods are provided.

Maintained by Thorsten Pohlert. Last updated 6 months ago.

fortran

25.1 match 6 stars 7.24 score 12 dependents

neurodata

lolR:Linear Optimal Low-Rank Projection

Supervised learning techniques designed for the situation when the dimensionality exceeds the sample size have a tendency to overfit as the dimensionality of the data increases. To remedy this High dimensionality; low sample size (HDLSS) situation, we attempt to learn a lower-dimensional representation of the data before learning a classifier. That is, we project the data to a situation where the dimensionality is more manageable, and then are able to better apply standard classification or clustering techniques since we will have fewer dimensions to overfit. A number of previous works have focused on how to strategically reduce dimensionality in the unsupervised case, yet in the supervised HDLSS regime, few works have attempted to devise dimensionality reduction techniques that leverage the labels associated with the data. In this package and the associated manuscript Vogelstein et al. (2017) <arXiv:1709.01233>, we provide several methods for feature extraction, some utilizing labels and some not, along with easily extensible utilities to simplify cross-validative efforts to identify the best feature extraction method. Additionally, we include a series of adaptable benchmark simulations to serve as a standard for future investigative efforts into supervised HDLSS. Finally, we produce a comprehensive comparison of the included algorithms across a range of benchmark simulations and real data applications.

Maintained by Eric Bridgeford. Last updated 4 years ago.

19.8 match 20 stars 7.28 score 80 scripts

tidyverse

dplyr:A Grammar of Data Manipulation

A fast, consistent tool for working with data frame like objects, both in memory and out of memory.

Maintained by Hadley Wickham. Last updated 12 days ago.

data-manipulationgrammarcpp

5.5 match 4.8k stars 24.68 score 659k scripts 7.8k dependents

jwood000

RcppAlgos:High Performance Tools for Combinatorics and Computational Mathematics

Provides optimized functions and flexible iterators implemented in C++ for solving problems in combinatorics and computational mathematics. Handles various combinatorial objects including combinations, permutations, integer partitions and compositions, Cartesian products, unordered Cartesian products, and partition of groups. Utilizes the RMatrix class from 'RcppParallel' for thread safety. The combination and permutation functions contain constraint parameters that allow for generation of all results of a vector meeting specific criteria (e.g. finding all combinations such that the sum is between two bounds). Capable of ranking/unranking combinatorial objects efficiently (e.g. retrieve only the nth lexicographical result) which sets up nicely for parallelization as well as random sampling. Gmp support permits exploration where the total number of results is large (e.g. comboSample(10000, 500, n = 4)). Additionally, there are several high performance number theoretic functions that are useful for problems common in computational mathematics. Some of these functions make use of the fast integer division library 'libdivide'. The primeSieve function is based on the segmented sieve of Eratosthenes implementation by Kim Walisch. It is also efficient for large numbers by using the cache friendly improvements originally developed by Tomás Oliveira. Finally, there is a prime counting function that implements Legendre's formula based on the work of Kim Walisch.

Maintained by Joseph Wood. Last updated 1 months ago.

combinationscombinatoricsfactorizationnumber-theoryparallelpermutationprime-factorizationsprimesievegmpcpp

11.2 match 45 stars 10.04 score 153 scripts 12 dependents

nflverse

nflreadr:Download 'nflverse' Data

A minimal package for downloading data from 'GitHub' repositories of the 'nflverse' project.

Maintained by Tan Ho. Last updated 4 months ago.

nflnflfastrnflversesports-data

8.6 match 66 stars 12.46 score 476 scripts 10 dependents

braverock

PortfolioAnalytics:Portfolio Analysis, Including Numerical Methods for Optimization of Portfolios

Portfolio optimization and analysis routines and graphics.

Maintained by Brian G. Peterson. Last updated 3 months ago.

9.0 match 81 stars 11.49 score 626 scripts 2 dependents

alanarnholt

BSDA:Basic Statistics and Data Analysis

Data sets for book "Basic Statistics and Data Analysis" by Larry J. Kitchens.

Maintained by Alan T. Arnholt. Last updated 2 years ago.

10.6 match 7 stars 9.11 score 1.3k scripts 6 dependents

chrisaddy

rrr:Reduced-Rank Regression

Reduced-rank regression, diagnostics and graphics.

Maintained by Chris Addy. Last updated 8 years ago.

18.6 match 10 stars 5.06 score 23 scripts

kaifenglu

lrstat:Power and Sample Size Calculation for Non-Proportional Hazards and Beyond

Performs power and sample size calculation for non-proportional hazards model using the Fleming-Harrington family of weighted log-rank tests. The sequentially calculated log-rank test score statistics are assumed to have independent increments as characterized in Anastasios A. Tsiatis (1982) <doi:10.1080/01621459.1982.10477898>. The mean and variance of log-rank test score statistics are calculated based on Kaifeng Lu (2021) <doi:10.1002/pst.2069>. The boundary crossing probabilities are calculated using the recursive integration algorithm described in Christopher Jennison and Bruce W. Turnbull (2000, ISBN:0849303168). The package can also be used for continuous, binary, and count data. For continuous data, it can handle missing data through mixed-model for repeated measures (MMRM). In crossover designs, it can estimate direct treatment effects while accounting for carryover effects. For binary data, it can design Simon's 2-stage, modified toxicity probability-2 (mTPI-2), and Bayesian optimal interval (BOIN) trials. For count data, it can design group sequential trials for negative binomial endpoints with censoring. Additionally, it facilitates group sequential equivalence trials for all supported data types. Moreover, it can design adaptive group sequential trials for changes in sample size, error spending function, number and spacing or future looks. Finally, it offers various options for adjusted p-values, including graphical and gatekeeping procedures.

Maintained by Kaifeng Lu. Last updated 3 months ago.

cpp

13.4 match 2 stars 5.58 score 30 scripts

guido-s

netmeta:Network Meta-Analysis using Frequentist Methods

A comprehensive set of functions providing frequentist methods for network meta-analysis (Balduzzi et al., 2023) <doi:10.18637/jss.v106.i02> and supporting Schwarzer et al. (2015) <doi:10.1007/978-3-319-21416-0>, Chapter 8 "Network Meta-Analysis": - frequentist network meta-analysis following Rücker (2012) <doi:10.1002/jrsm.1058>; - additive network meta-analysis for combinations of treatments (Rücker et al., 2020) <doi:10.1002/bimj.201800167>; - network meta-analysis of binary data using the Mantel-Haenszel or non-central hypergeometric distribution method (Efthimiou et al., 2019) <doi:10.1002/sim.8158>, or penalised logistic regression (Evrenoglou et al., 2022) <doi:10.1002/sim.9562>; - rankograms and ranking of treatments by the Surface under the cumulative ranking curve (SUCRA) (Salanti et al., 2013) <doi:10.1016/j.jclinepi.2010.03.016>; - ranking of treatments using P-scores (frequentist analogue of SUCRAs without resampling) according to Rücker & Schwarzer (2015) <doi:10.1186/s12874-015-0060-8>; - split direct and indirect evidence to check consistency (Dias et al., 2010) <doi:10.1002/sim.3767>, (Efthimiou et al., 2019) <doi:10.1002/sim.8158>; - league table with network meta-analysis results; - 'comparison-adjusted' funnel plot (Chaimani & Salanti, 2012) <doi:10.1002/jrsm.57>; - net heat plot and design-based decomposition of Cochran's Q according to Krahn et al. (2013) <doi:10.1186/1471-2288-13-35>; - measures characterizing the flow of evidence between two treatments by König et al. (2013) <doi:10.1002/sim.6001>; - automated drawing of network graphs described in Rücker & Schwarzer (2016) <doi:10.1002/jrsm.1143>; - partial order of treatment rankings ('poset') and Hasse diagram for 'poset' (Carlsen & Bruggemann, 2014) <doi:10.1002/cem.2569>; (Rücker & Schwarzer, 2017) <doi:10.1002/jrsm.1270>; - contribution matrix as described in Papakonstantinou et al. (2018) <doi:10.12688/f1000research.14770.3> and Davies et al. (2022) <doi:10.1002/sim.9346>; - subgroup network meta-analysis.

Maintained by Guido Schwarzer. Last updated 2 days ago.

meta-analysisnetwork-meta-analysisrstudio

6.2 match 33 stars 11.82 score 199 scripts 10 dependents

bioc

BiocGenerics:S4 generic functions used in Bioconductor

The package defines many S4 generic functions used in Bioconductor.

Maintained by Hervé Pagès. Last updated 1 months ago.

infrastructurebioconductor-packagecore-package

5.1 match 12 stars 14.22 score 612 scripts 2.2k dependents

bioc

mixOmics:Omics Data Integration Project

Multivariate methods are well suited to large omics data sets where the number of variables (e.g. genes, proteins, metabolites) is much larger than the number of samples (patients, cells, mice). They have the appealing properties of reducing the dimension of the data by using instrumental variables (components), which are defined as combinations of all variables. Those components are then used to produce useful graphical outputs that enable better understanding of the relationships and correlation structures between the different data sets that are integrated. mixOmics offers a wide range of multivariate methods for the exploration and integration of biological datasets with a particular focus on variable selection. The package proposes several sparse multivariate models we have developed to identify the key variables that are highly correlated, and/or explain the biological outcome of interest. The data that can be analysed with mixOmics may come from high throughput sequencing technologies, such as omics data (transcriptomics, metabolomics, proteomics, metagenomics etc) but also beyond the realm of omics (e.g. spectral imaging). The methods implemented in mixOmics can also handle missing values without having to delete entire rows with missing data. A non exhaustive list of methods include variants of generalised Canonical Correlation Analysis, sparse Partial Least Squares and sparse Discriminant Analysis. Recently we implemented integrative methods to combine multiple data sets: N-integration with variants of Generalised Canonical Correlation Analysis and P-integration with variants of multi-group Partial Least Squares.

Maintained by Eva Hamrud. Last updated 3 days ago.

immunooncologymicroarraysequencingmetabolomicsmetagenomicsproteomicsgenepredictionmultiplecomparisonclassificationregressionbioconductorgenomicsgenomics-datagenomics-visualizationmultivariate-analysismultivariate-statisticsomicsr-pkgr-project

4.5 match 182 stars 13.71 score 1.3k scripts 22 dependents

esteban-alfaro

adabag:Applies Multiclass AdaBoost.M1, SAMME and Bagging

It implements Freund and Schapire's Adaboost.M1 algorithm and Breiman's Bagging algorithm using classification trees as individual classifiers. Once these classifiers have been trained, they can be used to predict on new data. Also, cross validation estimation of the error can be done. Since version 2.0 the function margins() is available to calculate the margins for these classifiers. Also a higher flexibility is achieved giving access to the rpart.control() argument of 'rpart'. Four important new features were introduced on version 3.0, AdaBoost-SAMME (Zhu et al., 2009) is implemented and a new function errorevol() shows the error of the ensembles as a function of the number of iterations. In addition, the ensembles can be pruned using the option 'newmfinal' in the predict.bagging() and predict.boosting() functions and the posterior probability of each class for observations can be obtained. Version 3.1 modifies the relative importance measure to take into account the gain of the Gini index given by a variable in each tree and the weights of these trees. Version 4.0 includes the margin-based ordered aggregation for Bagging pruning (Guo and Boukir, 2013) and a function to auto prune the 'rpart' tree. Moreover, three new plots are also available importanceplot(), plot.errorevol() and plot.margins(). Version 4.1 allows to predict on unlabeled data. Version 4.2 includes the parallel computation option for some of the functions. Version 5.0 includes the Boosting and Bagging algorithms for label ranking (Albano, Sciandra and Plaia, 2023).

Maintained by Esteban Alfaro. Last updated 2 years ago.

9.6 match 5 stars 6.27 score 720 scripts 6 dependents

tim-tu

weibulltools:Statistical Methods for Life Data Analysis

Provides statistical methods and visualizations that are often used in reliability engineering. Comprises a compact and easily accessible set of methods and visualization tools that make the examination and adjustment as well as the analysis and interpretation of field data (and bench tests) as simple as possible. Non-parametric estimators like Median Ranks, Kaplan-Meier (Abernethy, 2006, <ISBN:978-0-9653062-3-2>), Johnson (Johnson, 1964, <ISBN:978-0444403223>), and Nelson-Aalen for failure probability estimation within samples that contain failures as well as censored data are included. The package supports methods like Maximum Likelihood and Rank Regression, (Genschel and Meeker, 2010, <DOI:10.1080/08982112.2010.503447>) for the estimation of multiple parametric lifetime distributions, as well as the computation of confidence intervals of quantiles and probabilities using the delta method related to Fisher's confidence intervals (Meeker and Escobar, 1998, <ISBN:9780471673279>) and the beta-binomial confidence bounds. If desired, mixture model analysis can be done with segmented regression and the EM algorithm. Besides the well-known Weibull analysis, the package also contains Monte Carlo methods for the correction and completion of imprecisely recorded or unknown lifetime characteristics. (Verband der Automobilindustrie e.V. (VDA), 2016, <ISSN:0943-9412>). Plots are created statically ('ggplot2') or interactively ('plotly') and can be customized with functions of the respective visualization package. The graphical technique of probability plotting as well as the addition of regression lines and confidence bounds to existing plots are supported.

Maintained by Tim-Gunnar Hensel. Last updated 2 years ago.

field-data-analysisinteractive-visualizationsplotlyreliability-analysisweibull-analysisweibulltoolsopenblascpp

8.8 match 13 stars 6.15 score 54 scripts

myllym

GET:Global Envelopes

Implementation of global envelopes for a set of general d-dimensional vectors T in various applications. A 100(1-alpha)% global envelope is a band bounded by two vectors such that the probability that T falls outside this envelope in any of the d points is equal to alpha. Global means that the probability is controlled simultaneously for all the d elements of the vectors. The global envelopes can be used for graphical Monte Carlo and permutation tests where the test statistic is a multivariate vector or function (e.g. goodness-of-fit testing for point patterns and random sets, functional analysis of variance, functional general linear model, n-sample test of correspondence of distribution functions), for central regions of functional or multivariate data (e.g. outlier detection, functional boxplot) and for global confidence and prediction bands (e.g. confidence band in polynomial regression, Bayesian posterior prediction). See Myllymäki and Mrkvička (2024) <doi:10.18637/jss.v111.i03>, Myllymäki et al. (2017) <doi:10.1111/rssb.12172>, Mrkvička and Myllymäki (2023) <doi:10.1007/s11222-023-10275-7>, Mrkvička et al. (2016) <doi:10.1016/j.spasta.2016.04.005>, Mrkvička et al. (2017) <doi:10.1007/s11222-016-9683-9>, Mrkvička et al. (2020) <doi:10.14736/kyb-2020-3-0432>, Mrkvička et al. (2021) <doi:10.1007/s11009-019-09756-y>, Myllymäki et al. (2021) <doi:10.1016/j.spasta.2020.100436>, Mrkvička et al. (2022) <doi:10.1002/sim.9236>, Dai et al. (2022) <doi:10.5772/intechopen.100124>, Dvořák and Mrkvička (2022) <doi:10.1007/s00180-021-01134-y>, Mrkvička et al. (2023) <doi:10.48550/arXiv.2309.04746>, and Konstantinou et al. (2024) <doi: 10.1007/s00180-024-01569-z>.

Maintained by Mari Myllymäki. Last updated 4 months ago.

5.8 match 11 stars 9.33 score 46 scripts 5 dependents

robjhyndman

rcademy:Tools to assist with academic promotions

Ideas and tools to help with preparing documentation for promotions at universities.

Maintained by Rob Hyndman. Last updated 6 months ago.

10.2 match 14 stars 4.23 score 9 scripts

mikejareds

hermiter:Efficient Sequential and Batch Estimation of Univariate and Bivariate Probability Density Functions and Cumulative Distribution Functions along with Quantiles (Univariate) and Nonparametric Correlation (Bivariate)

Facilitates estimation of full univariate and bivariate probability density functions and cumulative distribution functions along with full quantile functions (univariate) and nonparametric correlation (bivariate) using Hermite series based estimators. These estimators are particularly useful in the sequential setting (both stationary and non-stationary) and one-pass batch estimation setting for large data sets. Based on: Stephanou, Michael, Varughese, Melvin and Macdonald, Iain. "Sequential quantiles via Hermite series density estimation." Electronic Journal of Statistics 11.1 (2017): 570-607 <doi:10.1214/17-EJS1245>, Stephanou, Michael and Varughese, Melvin. "On the properties of Hermite series based distribution function estimators." Metrika (2020) <doi:10.1007/s00184-020-00785-z> and Stephanou, Michael and Varughese, Melvin. "Sequential estimation of Spearman rank correlation using Hermite series estimators." Journal of Multivariate Analysis (2021) <doi:10.1016/j.jmva.2021.104783>.

Maintained by Michael Stephanou. Last updated 7 months ago.

cumulative-distribution-functionkendall-correlation-coefficientonline-algorithmsprobability-density-functionquantilespearman-correlation-coefficientstatisticsstreaming-algorithmsstreaming-datacpp

7.7 match 15 stars 5.58 score 17 scripts

thothorn

maxstat:Maximally Selected Rank Statistics

Maximally selected rank statistics with several p-value approximations.

Maintained by Torsten Hothorn. Last updated 8 years ago.

5.6 match 1 stars 7.58 score 107 scripts 56 dependents

welch-lab

cytosignal:What the Package Does (One Line, Title Case)

What the package does (one paragraph).

Maintained by Jialin Liu. Last updated 6 days ago.

openblascpp

6.8 match 16 stars 5.95 score 6 scripts

f-caeiro

randtests:Testing Randomness in R

Provides several non parametric randomness tests for numeric sequences.

Maintained by Frederico Caeiro. Last updated 11 months ago.

9.9 match 4.00 score 235 scripts 3 dependents

bioc

PDATK:Pancreatic Ductal Adenocarcinoma Tool-Kit

Pancreatic ductal adenocarcinoma (PDA) has a relatively poor prognosis and is one of the most lethal cancers. Molecular classification of gene expression profiles holds the potential to identify meaningful subtypes which can inform therapeutic strategy in the clinical setting. The Pancreatic Cancer Adenocarcinoma Tool-Kit (PDATK) provides an S4 class-based interface for performing unsupervised subtype discovery, cross-cohort meta-clustering, gene-expression-based classification, and subsequent survival analysis to identify prognostically useful subtypes in pancreatic cancer and beyond. Two novel methods, Consensus Subtypes in Pancreatic Cancer (CSPC) and Pancreatic Cancer Overall Survival Predictor (PCOSP) are included for consensus-based meta-clustering and overall-survival prediction, respectively. Additionally, four published subtype classifiers and three published prognostic gene signatures are included to allow users to easily recreate published results, apply existing classifiers to new data, and benchmark the relative performance of new methods. The use of existing Bioconductor classes as input to all PDATK classes and methods enables integration with existing Bioconductor datasets, including the 21 pancreatic cancer patient cohorts available in the MetaGxPancreas data package. PDATK has been used to replicate results from Sandhu et al (2019) [https://doi.org/10.1200/cci.18.00102] and an additional paper is in the works using CSPC to validate subtypes from the included published classifiers, both of which use the data available in MetaGxPancreas. The inclusion of subtype centroids and prognostic gene signatures from these and other publications will enable researchers and clinicians to classify novel patient gene expression data, allowing the direct clinical application of the classifiers included in PDATK. Overall, PDATK provides a rich set of tools to identify and validate useful prognostic and molecular subtypes based on gene-expression data, benchmark new classifiers against existing ones, and apply discovered classifiers on novel patient data to inform clinical decision making.

Maintained by Benjamin Haibe-Kains. Last updated 5 months ago.

geneexpressionpharmacogeneticspharmacogenomicssoftwareclassificationsurvivalclusteringgeneprediction

9.1 match 1 stars 4.31 score 17 scripts