Showing 200 of total 332 results (show query)

cran

nlme:Linear and Nonlinear Mixed Effects Models

Fit and compare Gaussian linear and nonlinear mixed-effects models.

Maintained by R Core Team. Last updated 2 months ago.

fortran

7.0 match 6 stars 13.00 score 13k scripts 8.7k dependents

berndbischl

BBmisc:Miscellaneous Helper Functions for B. Bischl

Miscellaneous helper functions for and from B. Bischl and some other guys, mainly for package development.

Maintained by Bernd Bischl. Last updated 2 years ago.

7.0 match 20 stars 10.59 score 980 scripts 69 dependents

tidyverse

dplyr:A Grammar of Data Manipulation

A fast, consistent tool for working with data frame like objects, both in memory and out of memory.

Maintained by Hadley Wickham. Last updated 16 days ago.

data-manipulationgrammarcpp

3.0 match 4.8k stars 24.68 score 659k scripts 7.8k dependents

ebailey78

shinyBS:Extra Twitter Bootstrap Components for Shiny

Adds easy access to additional Twitter Bootstrap components to Shiny.

Maintained by Eric Bailey. Last updated 9 years ago.

3.0 match 183 stars 12.19 score 3.1k scripts 101 dependents

atorus-research

Tplyr:A Traceability Focused Grammar of Clinical Data Summary

A traceability focused tool created to simplify the data manipulation necessary to create clinical summaries.

Maintained by Mike Stackhouse. Last updated 1 years ago.

pharmatables

3.1 match 95 stars 9.49 score 138 scripts 2 dependents

datastorm-open

visNetwork:Network Visualization using 'vis.js' Library

Provides an R interface to the 'vis.js' JavaScript charting library. It allows an interactive visualization of networks.

Maintained by Benoit Thieurmel. Last updated 2 years ago.

1.8 match 549 stars 15.14 score 4.1k scripts 195 dependents

jmbarbone

fuj:Functions and Utilities for Jordan

Provides core functions and utilities for packages and other code developed by Jordan Mark Barbone.

Maintained by Jordan Mark Barbone. Last updated 10 days ago.

6.0 match 2 stars 4.48 score 8 scripts 1 dependents

nicchr

fastplyr:Fast Alternatives to 'tidyverse' Functions

A full set of fast data manipulation tools with a tidy front-end and a fast back-end using 'collapse' and 'cheapr'.

Maintained by Nick Christofides. Last updated 27 days ago.

cpp

4.1 match 23 stars 6.32 score 36 scripts 1 dependents

rdoctaskforce

pkgcond:Classed Error and Warning Conditions

This provides utilities for creating classed error and warning conditions based on where the error originated.

Maintained by Andrew Redd. Last updated 4 years ago.

5.0 match 5 stars 5.19 score 41 scripts 5 dependents

christophergandrud

networkD3:D3 JavaScript Network Graphs from R

Creates 'D3' 'JavaScript' network, tree, dendrogram, and Sankey graphs from 'R'.

Maintained by Christopher Gandrud. Last updated 6 years ago.

d3jsnetworks

1.8 match 654 stars 13.55 score 3.4k scripts 31 dependents

truecluster

ff:Memory-Efficient Storage of Large Data on Disk and Fast Access Functions

The ff package provides data structures that are stored on disk but behave (almost) as if they were in RAM by transparently mapping only a section (pagesize) in main memory - the effective virtual memory consumption per ff object. ff supports R's standard atomic data types 'double', 'logical', 'raw' and 'integer' and non-standard atomic types boolean (1 bit), quad (2 bit unsigned), nibble (4 bit unsigned), byte (1 byte signed with NAs), ubyte (1 byte unsigned), short (2 byte signed with NAs), ushort (2 byte unsigned), single (4 byte float with NAs). For example 'quad' allows efficient storage of genomic data as an 'A','T','G','C' factor. The unsigned types support 'circular' arithmetic. There is also support for close-to-atomic types 'factor', 'ordered', 'POSIXct', 'Date' and custom close-to-atomic types. ff not only has native C-support for vectors, matrices and arrays with flexible dimorder (major column-order, major row-order and generalizations for arrays). There is also a ffdf class not unlike data.frames and import/export filters for csv files. ff objects store raw data in binary flat files in native encoding, and complement this with metadata stored in R as physical and virtual attributes. ff objects have well-defined hybrid copying semantics, which gives rise to certain performance improvements through virtualization. ff objects can be stored and reopened across R sessions. ff files can be shared by multiple ff R objects (using different data en/de-coding schemes) in the same process or from multiple R processes to exploit parallelism. A wide choice of finalizer options allows to work with 'permanent' files as well as creating/removing 'temporary' ff files completely transparent to the user. On certain OS/Filesystem combinations, creating the ff files works without notable delay thanks to using sparse file allocation. Several access optimization techniques such as Hybrid Index Preprocessing and Virtualization are implemented to achieve good performance even with large datasets, for example virtual matrix transpose without touching a single byte on disk. Further, to reduce disk I/O, 'logicals' and non-standard data types get stored native and compact on binary flat files i.e. logicals take up exactly 2 bits to represent TRUE, FALSE and NA. Beyond basic access functions, the ff package also provides compatibility functions that facilitate writing code for ff and ram objects and support for batch processing on ff objects (e.g. as.ram, as.ff, ffapply). ff interfaces closely with functionality from package 'bit': chunked looping, fast bit operations and coercions between different objects that can store subscript information ('bit', 'bitwhich', ff 'boolean', ri range index, hi hybrid index). This allows to work interactively with selections of large datasets and quickly modify selection criteria. Further high-performance enhancements can be made available upon request.

Maintained by Jens Oehlschlรคgel. Last updated 2 months ago.

cpp

1.9 match 27 stars 12.01 score 764 scripts 71 dependents

dnychka

fields:Tools for Spatial Data

For curve, surface and function fitting with an emphasis on splines, spatial data, geostatistics, and spatial statistics. The major methods include cubic, and thin plate splines, Kriging, and compactly supported covariance functions for large data sets. The splines and Kriging methods are supported by functions that can determine the smoothing parameter (nugget and sill variance) and other covariance function parameters by cross validation and also by restricted maximum likelihood. For Kriging there is an easy to use function that also estimates the correlation scale (range parameter). A major feature is that any covariance function implemented in R and following a simple format can be used for spatial prediction. There are also many useful functions for plotting and working with spatial data as images. This package also contains an implementation of sparse matrix methods for large spatial data sets and currently requires the sparse matrix (spam) package. Use help(fields) to get started and for an overview. The fields source code is deliberately commented and provides useful explanations of numerical details as a companion to the manual pages. The commented source code can be viewed by expanding the source code version and looking in the R subdirectory. The reference for fields can be generated by the citation function in R and has DOI <doi:10.5065/D6W957CT>. Development of this package was supported in part by the National Science Foundation Grant 1417857, the National Center for Atmospheric Research, and Colorado School of Mines. See the Fields URL for a vignette on using this package and some background on spatial statistics.

Maintained by Douglas Nychka. Last updated 9 months ago.

fortran

1.8 match 15 stars 12.60 score 7.7k scripts 295 dependents

insightsengineering

tern:Create Common TLGs Used in Clinical Trials

Table, Listings, and Graphs (TLG) library for common outputs used in clinical trials.

Maintained by Joe Zhu. Last updated 2 months ago.

clinical-trialsgraphslistingsnestoutputstables

1.7 match 83 stars 12.50 score 186 scripts 9 dependents

markfairbanks

tidytable:Tidy Interface to 'data.table'

A tidy interface to 'data.table', giving users the speed of 'data.table' while using tidyverse-like syntax.

Maintained by Mark Fairbanks. Last updated 2 months ago.

1.8 match 458 stars 11.41 score 732 scripts 10 dependents

colearendt

tidyjson:Tidy Complex 'JSON'

Turn complex 'JSON' data into tidy data frames.

Maintained by Cole Arendt. Last updated 2 years ago.

1.7 match 192 stars 10.64 score 522 scripts 7 dependents

cdriveraus

ctsem:Continuous Time Structural Equation Modelling

Hierarchical continuous (and discrete) time state space modelling, for linear and nonlinear systems measured by continuous variables, with limited support for binary data. The subject specific dynamic system is modelled as a stochastic differential equation (SDE) or difference equation, measurement models are typically multivariate normal factor models. Linear mixed effects SDE's estimated via maximum likelihood and optimization are the default. Nonlinearities, (state dependent parameters) and random effects on all parameters are possible, using either max likelihood / max a posteriori optimization (with optional importance sampling) or Stan's Hamiltonian Monte Carlo sampling. See <https://github.com/cdriveraus/ctsem/raw/master/vignettes/hierarchicalmanual.pdf> for details. Priors may be used. For the conceptual overview of the hierarchical Bayesian linear SDE approach, see <https://www.researchgate.net/publication/324093594_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling>. Exogenous inputs may also be included, for an overview of such possibilities see <https://www.researchgate.net/publication/328221807_Understanding_the_Time_Course_of_Interventions_with_Continuous_Time_Dynamic_Models> . Stan based functions are not available on 32 bit Windows systems at present. <https://cdriver.netlify.app/> contains some tutorial blog posts.

Maintained by Charles Driver. Last updated 14 days ago.

stochastic-differential-equationstime-seriescpp

1.7 match 42 stars 9.58 score 366 scripts 1 dependents

mqbssppe

fabMix:Overfitting Bayesian Mixtures of Factor Analyzers with Parsimonious Covariance and Unknown Number of Components

Model-based clustering of multivariate continuous data using Bayesian mixtures of factor analyzers (Papastamoulis (2019) <DOI:10.1007/s11222-019-09891-z> (2018) <DOI:10.1016/j.csda.2018.03.007>). The number of clusters is estimated using overfitting mixture models (Rousseau and Mengersen (2011) <DOI:10.1111/j.1467-9868.2011.00781.x>): suitable prior assumptions ensure that asymptotically the extra components will have zero posterior weight, therefore, the inference is based on the ``alive'' components. A Gibbs sampler is implemented in order to (approximately) sample from the posterior distribution of the overfitting mixture. A prior parallel tempering scheme is also available, which allows to run multiple parallel chains with different prior distributions on the mixture weights. These chains run in parallel and can swap states using a Metropolis-Hastings move. Eight different parameterizations give rise to parsimonious representations of the covariance per cluster (following Mc Nicholas and Murphy (2008) <DOI:10.1007/s11222-008-9056-0>). The model parameterization and number of factors is selected according to the Bayesian Information Criterion. Identifiability issues related to label switching are dealt by post-processing the simulated output with the Equivalence Classes Representatives algorithm (Papastamoulis and Iliopoulos (2010) <DOI:10.1198/jcgs.2010.09008>, Papastamoulis (2016) <DOI:10.18637/jss.v069.c01>).

Maintained by Panagiotis Papastamoulis. Last updated 1 years ago.

openblascppopenmp

7.4 match 2.09 score 41 scripts 1 dependents

pharmar

riskmetric:Risk Metrics to Evaluating R Packages

Facilities for assessing R packages against a number of metrics to help quantify their robustness.

Maintained by Eli Miller. Last updated 11 hours ago.

1.7 match 167 stars 8.91 score 43 scripts

wraff

wrMisc:Analyze Experimental High-Throughput (Omics) Data

The efficient treatment and convenient analysis of experimental high-throughput (omics) data gets facilitated through this collection of diverse functions. Several functions address advanced object-conversions, like manipulating lists of lists or lists of arrays, reorganizing lists to arrays or into separate vectors, merging of multiple entries, etc. Another set of functions provides speed-optimized calculation of standard deviation (sd), coefficient of variance (CV) or standard error of the mean (SEM) for data in matrixes or means per line with respect to additional grouping (eg n groups of replicates). A group of functions facilitate dealing with non-redundant information, by indexing unique, adding counters to redundant or eliminating lines with respect redundancy in a given reference-column, etc. Help is provided to identify very closely matching numeric values to generate (partial) distance matrixes for very big data in a memory efficient manner or to reduce the complexity of large data-sets by combining very close values. Other functions help aligning a matrix or data.frame to a reference using partial matching or to mine an experimental setup to extract patterns of replicate samples. Many times large experimental datasets need some additional filtering, adequate functions are provided. Convenient data normalization is supported in various different modes, parameter estimation via permutations or boot-strap as well as flexible testing of multiple pair-wise combinations using the framework of 'limma' is provided, too. Batch reading (or writing) of sets of files and combining data to arrays is supported, too.

Maintained by Wolfgang Raffelsberger. Last updated 7 months ago.

3.3 match 4.44 score 33 scripts 4 dependents

branchlab

metasnf:Meta Clustering with Similarity Network Fusion

Framework to facilitate patient subtyping with similarity network fusion and meta clustering. The similarity network fusion (SNF) algorithm was introduced by Wang et al. (2014) in <doi:10.1038/nmeth.2810>. SNF is a data integration approach that can transform high-dimensional and diverse data types into a single similarity network suitable for clustering with minimal loss of information from each initial data source. The meta clustering approach was introduced by Caruana et al. (2006) in <doi:10.1109/ICDM.2006.103>. Meta clustering involves generating a wide range of cluster solutions by adjusting clustering hyperparameters, then clustering the solutions themselves into a manageable number of qualitatively similar solutions, and finally characterizing representative solutions to find ones that are best for the user's specific context. This package provides a framework to easily transform multi-modal data into a wide range of similarity network fusion-derived cluster solutions as well as to visualize, characterize, and validate those solutions. Core package functionality includes easy customization of distance metrics, clustering algorithms, and SNF hyperparameters to generate diverse clustering solutions; calculation and plotting of associations between features, between patients, and between cluster solutions; and standard cluster validation approaches including resampled measures of cluster stability, standard metrics of cluster quality, and label propagation to evaluate generalizability in unseen data. Associated vignettes guide the user through using the package to identify patient subtypes while adhering to best practices for unsupervised learning.

Maintained by Prashanth S Velayudhan. Last updated 8 days ago.

bioinformaticsclusteringmetaclusteringsnf

1.7 match 8 stars 8.21 score 30 scripts

graemetlloyd

Claddis:Measuring Morphological Diversity and Evolutionary Tempo

Measures morphological diversity from discrete character data and estimates evolutionary tempo on phylogenetic trees. Imports morphological data from #NEXUS (Maddison et al. (1997) <doi:10.1093/sysbio/46.4.590>) format with read_nexus_matrix(), and writes to both #NEXUS and TNT format (Goloboff et al. (2008) <doi:10.1111/j.1096-0031.2008.00217.x>). Main functions are test_rates(), which implements AIC and likelihood ratio tests for discrete character rates introduced across Lloyd et al. (2012) <doi:10.1111/j.1558-5646.2011.01460.x>, Brusatte et al. (2014) <doi:10.1016/j.cub.2014.08.034>, Close et al. (2015) <doi:10.1016/j.cub.2015.06.047>, and Lloyd (2016) <doi:10.1111/bij.12746>, and calculate_morphological_distances(), which implements multiple discrete character distance metrics from Gower (1971) <doi:10.2307/2528823>, Wills (1998) <doi:10.1006/bijl.1998.0255>, Lloyd (2016) <doi:10.1111/bij.12746>, and Hopkins and St John (2018) <doi:10.1098/rspb.2018.1784>. This also includes the GED correction from Lehmann et al. (2019) <doi:10.1111/pala.12430>. Multiple functions implement morphospace plots: plot_chronophylomorphospace() implements Sakamoto and Ruta (2012) <doi:10.1371/journal.pone.0039752>, plot_morphospace() implements Wills et al. (1994) <doi:10.1017/S009483730001263X>, plot_changes_on_tree() implements Wang and Lloyd (2016) <doi:10.1098/rspb.2016.0214>, and plot_morphospace_stack() implements Foote (1993) <doi:10.1017/S0094837300015864>. Other functions include safe_taxonomic_reduction(), which implements Wilkinson (1995) <doi:10.1093/sysbio/44.4.501>, map_dollo_changes() implements the Dollo stochastic character mapping of Tarver et al. (2018) <doi:10.1093/gbe/evy096>, and estimate_ancestral_states() implements the ancestral state options of Lloyd (2018) <doi:10.1111/pala.12380>. calculate_tree_length() and reconstruct_ancestral_states() implements the generalised algorithms from Swofford and Maddison (1992; no doi).

Maintained by Graeme T. Lloyd. Last updated 7 months ago.

1.8 match 13 stars 7.81 score 77 scripts 2 dependents

dwbapst

paleotree:Paleontological and Phylogenetic Analyses of Evolution

Provides tools for transforming, a posteriori time-scaling, and modifying phylogenies containing extinct (i.e. fossil) lineages. In particular, most users are interested in the functions timePaleoPhy, bin_timePaleoPhy, cal3TimePaleoPhy and bin_cal3TimePaleoPhy, which date cladograms of fossil taxa using stratigraphic data. This package also contains a large number of likelihood functions for estimating sampling and diversification rates from different types of data available from the fossil record (e.g. range data, occurrence data, etc). paleotree users can also simulate diversification and sampling in the fossil record using the function simFossilRecord, which is a detailed simulator for branching birth-death-sampling processes composed of discrete taxonomic units arranged in ancestor-descendant relationships. Users can use simFossilRecord to simulate diversification in incompletely sampled fossil records, under various models of morphological differentiation (i.e. the various patterns by which morphotaxa originate from one another), and with time-dependent, longevity-dependent and/or diversity-dependent rates of diversification, extinction and sampling. Additional functions allow users to translate simulated ancestor-descendant data from simFossilRecord into standard time-scaled phylogenies or unscaled cladograms that reflect the relationships among taxon units.

Maintained by David W. Bapst. Last updated 8 months ago.

1.8 match 21 stars 7.53 score 216 scripts 2 dependents

usaid-oha-si

selfdestructin5:Creates SI OHA Mission Director Briefers

Creates a series of data frames that can be passed to a gt() to create the PEPFAR summary tables.

Maintained by Tim Essam. Last updated 29 days ago.

3.4 match 1 stars 3.98 score 21 scripts

beckerbenj

eatGADS:Data Management of Large Hierarchical Data

Import 'SPSS' data, handle and change 'SPSS' meta data, store and access large hierarchical data in 'SQLite' data bases.

Maintained by Benjamin Becker. Last updated 26 days ago.

1.8 match 1 stars 7.36 score 34 scripts 1 dependents

samhforbes

PupillometryR:A Unified Pipeline for Pupillometry Data

Provides a unified pipeline to clean, prepare, plot, and run basic analyses on pupillometry experiments.

Maintained by Samuel Forbes. Last updated 1 years ago.

1.7 match 44 stars 7.58 score 288 scripts 1 dependents