Showing 200 of total 1360 results (show query)
robindenz1
adjustedCurves:Confounder-Adjusted Survival Curves and Cumulative Incidence Functions
Estimate and plot confounder-adjusted survival curves using either 'Direct Adjustment', 'Direct Adjustment with Pseudo-Values', various forms of 'Inverse Probability of Treatment Weighting', two forms of 'Augmented Inverse Probability of Treatment Weighting', 'Empirical Likelihood Estimation' or 'Targeted Maximum Likelihood Estimation'. Also includes a significance test for the difference between two adjusted survival curves and the calculation of adjusted restricted mean survival times. Additionally enables the user to estimate and plot cause-specific confounder-adjusted cumulative incidence functions in the competing risks setting using the same methods (with some exceptions). For details, see Denz et. al (2023) <doi:10.1002/sim.9681>.
Maintained by Robin Denz. Last updated 29 days ago.
adjustedconfidence-intervalscumulative-incidencesurvival-curves
69.8 match 38 stars 8.12 score 93 scriptschristophsax
seasonal:R Interface to X-13-ARIMA-SEATS
Easy-to-use interface to X-13-ARIMA-SEATS, the seasonal adjustment software by the US Census Bureau. It offers full access to almost all options and outputs of X-13, including X-11 and SEATS, automatic ARIMA model search, outlier detection and support for user defined holiday variables, such as Chinese New Year or Indian Diwali. A graphical user interface can be used through the 'seasonalview' package. Uses the X-13-binaries from the 'x13binary' package.
Maintained by Christoph Sax. Last updated 17 days ago.
seasonal-adjustmenttime-series
27.2 match 120 stars 12.03 score 1.1k scripts 8 dependentsfinnishcancerregistry
popEpi:Functions for Epidemiological Analysis using Population Data
Enables computation of epidemiological statistics, including those where counts or mortality rates of the reference population are used. Currently supported: excess hazard models (Dickman, Sloggett, Hills, and Hakulinen (2012) <doi:10.1002/sim.1597>), rates, mean survival times, relative/net survival (in particular the Ederer II (Ederer and Heise (1959)) and Pohar Perme (Pohar Perme, Stare, and Esteve (2012) <doi:10.1111/j.1541-0420.2011.01640.x>) estimators), and standardized incidence and mortality ratios, all of which can be easily adjusted for by covariates such as age. Fast splitting and aggregation of 'Lexis' objects (from package 'Epi') and other computations achieved using 'data.table'.
Maintained by Joonas Miettinen. Last updated 2 months ago.
adjust-estimatesage-adjustingdirect-adjustingepidemiologyindirect-adjustingsurvival
39.0 match 8 stars 8.05 score 117 scripts 1 dependentsikosmidis
brglm2:Bias Reduction in Generalized Linear Models
Estimation and inference from generalized linear models based on various methods for bias reduction and maximum penalized likelihood with powers of the Jeffreys prior as penalty. The 'brglmFit' fitting method can achieve reduction of estimation bias by solving either the mean bias-reducing adjusted score equations in Firth (1993) <doi:10.1093/biomet/80.1.27> and Kosmidis and Firth (2009) <doi:10.1093/biomet/asp055>, or the median bias-reduction adjusted score equations in Kenne et al. (2017) <doi:10.1093/biomet/asx046>, or through the direct subtraction of an estimate of the bias of the maximum likelihood estimator from the maximum likelihood estimates as in Cordeiro and McCullagh (1991) <https://www.jstor.org/stable/2345592>. See Kosmidis et al (2020) <doi:10.1007/s11222-019-09860-6> for more details. Estimation in all cases takes place via a quasi Fisher scoring algorithm, and S3 methods for the construction of of confidence intervals for the reduced-bias estimates are provided. In the special case of generalized linear models for binomial and multinomial responses (both ordinal and nominal), the adjusted score approaches to mean and media bias reduction have been found to return estimates with improved frequentist properties, that are also always finite, even in cases where the maximum likelihood estimates are infinite (e.g. complete and quasi-complete separation; see Kosmidis and Firth, 2020 <doi:10.1093/biomet/asaa052>, for a proof for mean bias reduction in logistic regression).
Maintained by Ioannis Kosmidis. Last updated 6 months ago.
adjusted-score-equationsalgorithmsbias-reducing-adjustmentsbias-reductionestimationglmlogistic-regressionnominal-responsesordinal-responsesregressionregression-algorithmsstatistics
21.6 match 32 stars 10.41 score 106 scripts 10 dependentsrvlenth
emmeans:Estimated Marginal Means, aka Least-Squares Means
Obtain estimated marginal means (EMMs) for many linear, generalized linear, and mixed models. Compute contrasts or linear functions of EMMs, trends, and comparisons of slopes. Plots and other displays. Least-squares means are discussed, and the term "estimated marginal means" is suggested, in Searle, Speed, and Milliken (1980) Population marginal means in the linear model: An alternative to least squares means, The American Statistician 34(4), 216-221 <doi:10.1080/00031305.1980.10483031>.
Maintained by Russell V. Lenth. Last updated 4 days ago.
10.5 match 377 stars 19.19 score 13k scripts 187 dependentsdcousin3
superb:Summary Plots with Adjusted Error Bars
Computes standard error and confidence interval of various descriptive statistics under various designs and sampling schemes. The main function, superb(), return a plot. It can also be used to obtain a dataframe with the statistics and their precision intervals so that other plotting environments (e.g., Excel) can be used. See Cousineau and colleagues (2021) <doi:10.1177/25152459211035109> or Cousineau (2017) <doi:10.5709/acp-0214-z> for a review as well as Cousineau (2005) <doi:10.20982/tqmp.01.1.p042>, Morey (2008) <doi:10.20982/tqmp.04.2.p061>, Baguley (2012) <doi:10.3758/s13428-011-0123-7>, Cousineau & Laurencelle (2016) <doi:10.1037/met0000055>, Cousineau & O'Brien (2014) <doi:10.3758/s13428-013-0441-z>, Calderini & Harding <doi:10.20982/tqmp.15.1.p001> for specific references.
Maintained by Denis Cousineau. Last updated 2 months ago.
error-barsplottingstatisticssummary-plotssummary-statisticsvisualization
20.9 match 19 stars 9.55 score 155 scripts 2 dependentsjbengler
tidyplots:Tidy Plots for Scientific Papers
The goal of 'tidyplots' is to streamline the creation of publication-ready plots for scientific papers. It allows to gradually add, remove and adjust plot components using a consistent and intuitive syntax.
Maintained by Jan Broder Engler. Last updated 4 days ago.
19.5 match 482 stars 9.40 score 85 scriptsallenzhuaz
MHTdiscrete:Multiple Hypotheses Testing for Discrete Data
A comprehensive tool for almost all existing multiple testing methods for discrete data. The package also provides some novel multiple testing procedures controlling FWER/FDR for discrete data. Given discrete p-values and their domains, the [method].p.adjust function returns adjusted p-values, which can be used to compare with the nominal significant level alpha and make decisions. For users' convenience, the functions also provide the output option for printing decision rules.
Maintained by Yalin Zhu. Last updated 6 years ago.
adjustment-computationsbenjamini-hochbergbonferronidiscrete-distributionsmultiple-testing-correction
55.8 match 1 stars 3.27 score 37 scriptsrjdverse
RJDemetra:Interface to 'JDemetra+' Seasonal Adjustment Software
Interface around 'JDemetra+' (<https://github.com/jdemetra/jdemetra-app>), the seasonal adjustment software officially recommended to the members of the European Statistical System (ESS) and the European System of Central Banks. It offers full access to all options and outputs of 'JDemetra+', including the two leading seasonal adjustment methods TRAMO/SEATS+ and X-12ARIMA/X-13ARIMA-SEATS.
Maintained by Alain Quartier-la-Tente. Last updated 10 days ago.
19.5 match 53 stars 8.67 score 128 scripts 5 dependentsbioc
gcrma:Background Adjustment Using Sequence Information
Background adjustment using sequence information
Maintained by Z. Wu. Last updated 5 months ago.
microarrayonechannelpreprocessing
22.7 match 7.28 score 164 scripts 11 dependentspoissonconsulting
extras:Helper Functions for Bayesian Analyses
Functions to 'numericise' 'R' objects (coerce to numeric objects), summarise 'MCMC' (Monte Carlo Markov Chain) samples and calculate deviance residuals as well as 'R' translations of some 'BUGS' (Bayesian Using Gibbs Sampling), 'JAGS' (Just Another Gibbs Sampler), 'STAN' and 'TMB' (Template Model Builder) functions.
Maintained by Nicole Hill. Last updated 2 months ago.
19.0 match 9 stars 8.49 score 15 scripts 16 dependentspletschm
aldvmm:Adjusted Limited Dependent Variable Mixture Models
The goal of the package 'aldvmm' is to fit adjusted limited dependent variable mixture models of health state utilities. Adjusted limited dependent variable mixture models are finite mixtures of normal distributions with an accumulation of density mass at the limits, and a gap between 100% quality of life and the next smaller utility value. The package 'aldvmm' uses the likelihood and expected value functions proposed by Hernandez Alava and Wailoo (2015) <doi:10.1177/1536867X1501500307> using normal component distributions and a multinomial logit model of probabilities of component membership.
Maintained by Mark Pletscher. Last updated 1 years ago.
clinical-trialscost-effectivenesseq5dfinite-mixturehealth-economicshtahuilimited-dependent-variablemappingmixture-modelpatient-reported-outcomesquality-of-lifeutilities
35.0 match 5 stars 4.40 score 2 scriptstalgalili
dendextend:Extending 'dendrogram' Functionality in R
Offers a set of functions for extending 'dendrogram' objects in R, letting you visualize and compare trees of 'hierarchical clusterings'. You can (1) Adjust a tree's graphical parameters - the color, size, type, etc of its branches, nodes and labels. (2) Visually and statistically compare different 'dendrograms' to one another.
Maintained by Tal Galili. Last updated 2 months ago.
8.4 match 154 stars 17.02 score 6.0k scripts 164 dependentsgamlss-dev
gamlss.dist:Distributions for Generalized Additive Models for Location Scale and Shape
A set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape, Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a 'log' or a 'logit' transformation respectively.
Maintained by Mikis Stasinopoulos. Last updated 22 days ago.
13.5 match 4 stars 10.50 score 346 scripts 71 dependentspaulnorthrop
lax:Loglikelihood Adjustment for Extreme Value Models
Performs adjusted inferences based on model objects fitted, using maximum likelihood estimation, by the extreme value analysis packages 'eva' <https://cran.r-project.org/package=eva>, 'evd' <https://cran.r-project.org/package=evd>, 'evir' <https://cran.r-project.org/package=evir>, 'extRemes' <https://cran.r-project.org/package=extRemes>, 'fExtremes' <https://cran.r-project.org/package=fExtremes>, 'ismev' <https://cran.r-project.org/package=ismev>, 'mev' <https://cran.r-project.org/package=mev>, 'POT' <https://cran.r-project.org/package=POT> and 'texmex' <https://cran.r-project.org/package=texmex>. Adjusted standard errors and an adjusted loglikelihood are provided, using the 'chandwich' package <https://cran.r-project.org/package=chandwich> and the object-oriented features of the 'sandwich' package <https://cran.r-project.org/package=sandwich>. The adjustment is based on a robust sandwich estimator of the parameter covariance matrix, based on the methodology in Chandler and Bate (2007) <doi:10.1093/biomet/asm015>. This can be used for cluster correlated data when interest lies in the parameters of the marginal distributions, or for performing inferences that are robust to certain types of model misspecification. Univariate extreme value models, including regression models, are supported.
Maintained by Paul J. Northrop. Last updated 1 years ago.
clustered-dataclusterscomposite-likelihoodevdextreme-value-analysisextreme-value-statisticsextremesindependence-loglikelihoodloglikelihood-adjustmentmlepotregressionregression-modellingrobustsandwichsandwich-estimator
32.0 match 3 stars 4.29 score 13 scriptsdistancedevelopment
mrds:Mark-Recapture Distance Sampling
Animal abundance estimation via conventional, multiple covariate and mark-recapture distance sampling (CDS/MCDS/MRDS). Detection function fitting is performed via maximum likelihood. Also included are diagnostics and plotting for fitted detection functions. Abundance estimation is via a Horvitz-Thompson-like estimator.
Maintained by Laura Marshall. Last updated 2 months ago.
15.7 match 4 stars 8.05 score 78 scripts 7 dependentspavlakrotka
NCC:Simulation and Analysis of Platform Trials with Non-Concurrent Controls
Design and analysis of flexible platform trials with non-concurrent controls. Functions for data generation, analysis, visualization and running simulation studies are provided. The implemented analysis methods are described in: Bofill Roig et al. (2022) <doi:10.1186/s12874-022-01683-w>, Saville et al. (2022) <doi:10.1177/17407745221112013> and Schmidli et al. (2014) <doi:10.1111/biom.12242>.
Maintained by Pavla Krotka. Last updated 7 days ago.
clinical-trialsplatform-trialssimulationstatistical-inferencejagscpp
18.2 match 5 stars 6.64 score 29 scriptsdankelley
oce:Analysis of Oceanographic Data
Supports the analysis of Oceanographic data, including 'ADCP' measurements, measurements made with 'argo' floats, 'CTD' measurements, sectional data, sea-level time series, coastline and topographic data, etc. Provides specialized functions for calculating seawater properties such as potential temperature in either the 'UNESCO' or 'TEOS-10' equation of state. Produces graphical displays that conform to the conventions of the Oceanographic literature. This package is discussed extensively by Kelley (2018) "Oceanographic Analysis with R" <doi:10.1007/978-1-4939-8844-0>.
Maintained by Dan Kelley. Last updated 2 days ago.
7.3 match 146 stars 15.42 score 4.2k scripts 18 dependentsrsquaredacademy
olsrr:Tools for Building OLS Regression Models
Tools designed to make it easier for users, particularly beginner/intermediate R users to build ordinary least squares regression models. Includes comprehensive regression output, heteroskedasticity tests, collinearity diagnostics, residual diagnostics, measures of influence, model fit assessment and variable selection procedures.
Maintained by Aravind Hebbali. Last updated 4 months ago.
collinearity-diagnosticslinear-modelsregressionstepwise-regression
9.1 match 103 stars 12.19 score 1.4k scripts 4 dependentstidyverse
ggplot2:Create Elegant Data Visualisations Using the Grammar of Graphics
A system for 'declaratively' creating graphics, based on "The Grammar of Graphics". You provide the data, tell 'ggplot2' how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.
Maintained by Thomas Lin Pedersen. Last updated 10 days ago.
data-visualisationvisualisation
4.3 match 6.6k stars 25.10 score 645k scripts 7.5k dependentsbschneidr
svrep:Tools for Creating, Updating, and Analyzing Survey Replicate Weights
Provides tools for creating and working with survey replicate weights, extending functionality of the 'survey' package from Lumley (2004) <doi:10.18637/jss.v009.i08>. Implements bootstrap methods for complex surveys, including the generalized survey bootstrap as described by Beaumont and Patak (2012) <doi:10.1111/j.1751-5823.2011.00166.x>. Methods are provided for applying nonresponse adjustments to both full-sample and replicate weights as described by Rust and Rao (1996) <doi:10.1177/096228029600500305>. Implements methods for sample-based calibration described by Opsomer and Erciulescu (2021) <https://www150.statcan.gc.ca/n1/pub/12-001-x/2021002/article/00006-eng.htm>. Diagnostic functions are included to compare weights and weighted estimates from different sets of replicate weights.
Maintained by Ben Schneider. Last updated 7 days ago.
12.5 match 8 stars 8.12 score 54 scripts 3 dependentsrstudio
keras3:R Interface to 'Keras'
Interface to 'Keras' <https://keras.io>, a high-level neural networks API. 'Keras' was developed with a focus on enabling fast experimentation, supports both convolution based networks and recurrent networks (as well as combinations of the two), and runs seamlessly on both CPU and GPU devices.
Maintained by Tomasz Kalinowski. Last updated 6 hours ago.
7.1 match 845 stars 13.60 score 264 scripts 2 dependentsbioc
ComplexHeatmap:Make Complex Heatmaps
Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns. Here the ComplexHeatmap package provides a highly flexible way to arrange multiple heatmaps and supports various annotation graphics.
Maintained by Zuguang Gu. Last updated 5 months ago.
softwarevisualizationsequencingclusteringcomplex-heatmapsheatmap
5.7 match 1.3k stars 16.93 score 16k scripts 151 dependentsmlverse
torchvision:Models, Datasets and Transformations for Images
Provides access to datasets, models and preprocessing facilities for deep learning with images. Integrates seamlessly with the 'torch' package and it's 'API' borrows heavily from 'PyTorch' vision package.
Maintained by Daniel Falbel. Last updated 6 months ago.
9.8 match 65 stars 9.74 score 313 scripts 6 dependentsdavisvaughan
almanac:Tools for Working with Recurrence Rules
Provides tools for defining recurrence rules and recurrence sets. Recurrence rules are a programmatic way to define a recurring event, like the first Monday of December. Multiple recurrence rules can be combined into larger recurrence sets. A full holiday and calendar interface is also provided that can generate holidays within a particular year, can detect if a date is a holiday, can respect holiday observance rules, and allows for custom holidays.
Maintained by Davis Vaughan. Last updated 2 years ago.
calendarsholidaysrecurrence-rules
11.1 match 73 stars 8.40 score 65 scripts 1 dependentsjtextor
dagitty:Graphical Analysis of Structural Causal Models
A port of the web-based software 'DAGitty', available at <https://dagitty.net>, for analyzing structural causal models (also known as directed acyclic graphs or DAGs). This package computes covariate adjustment sets for estimating causal effects, enumerates instrumental variables, derives testable implications (d-separation and vanishing tetrads), generates equivalent models, and includes a simple facility for data simulation.
Maintained by Johannes Textor. Last updated 3 months ago.
7.1 match 302 stars 12.83 score 1.7k scripts 11 dependentsstrengejacke
ggeffects:Create Tidy Data Frames of Marginal Effects for 'ggplot' from Model Outputs
Compute marginal effects and adjusted predictions from statistical models and returns the result as tidy data frames. These data frames are ready to use with the 'ggplot2'-package. Effects and predictions can be calculated for many different models. Interaction terms, splines and polynomial terms are also supported. The main functions are ggpredict(), ggemmeans() and ggeffect(). There is a generic plot()-method to plot the results using 'ggplot2'.
Maintained by Daniel Lรผdecke. Last updated 6 days ago.
estimated-marginal-meanshacktoberfestmarginal-effectsprediction
5.9 match 588 stars 15.55 score 3.6k scripts 7 dependentsmbannick
RobinCar:Robust Inference for Covariate Adjustment in Randomized Clinical Trials
Performs robust estimation and inference when using covariate adjustment and/or covariate-adaptive randomization in randomized clinical trials. Ting Ye, Jun Shao, Yanyao Yi, Qinyuan Zhao (2023) <doi:10.1080/01621459.2022.2049278>. Ting Ye, Marlena Bannick, Yanyao Yi, Jun Shao (2023) <doi:10.1080/24754269.2023.2205802>. Ting Ye, Jun Shao, Yanyao Yi (2023) <doi:10.1093/biomet/asad045>. Marlena Bannick, Jun Shao, Jingyi Liu, Yu Du, Yanyao Yi, Ting Ye (2024) <doi:10.48550/arXiv.2306.10213>.
Maintained by Marlena Bannick. Last updated 7 days ago.
19.9 match 6 stars 4.42 score 11 scriptssoodoku
guess:Adjust Estimates of Learning for Guessing
Adjust Estimates of Learning for Guessing. The package provides standard guessing correction, and a latent class model that leverages informative pre-post transitions. For details of the latent class model, see <http://gsood.com/research/papers/guess.pdf>.
Maintained by Gaurav Sood. Last updated 3 years ago.
20.5 match 3 stars 4.29 score 13 scriptscran
cusum:Cumulative Sum (CUSUM) Charts for Monitoring of Hospital Performance
Provides functions for constructing and evaluating CUSUM charts and RA-CUSUM charts with focus on false signal probability.
Maintained by Lena Hubig. Last updated 5 years ago.
22.6 match 3.81 score 16 scriptsbioc
BERT:High Performance Data Integration for Large-Scale Analyses of Incomplete Omic Profiles Using Batch-Effect Reduction Trees (BERT)
Provides efficient batch-effect adjustment of data with missing values. BERT orders all batch effect correction to a tree of pairwise computations. BERT allows parallelization over sub-trees.
Maintained by Yannis Schumann. Last updated 2 months ago.
batcheffectpreprocessingexperimentaldesignqualitycontrolbatch-effectbioconductor-packagebioinformaticsdata-integrationdata-science
15.9 match 2 stars 5.40 score 18 scriptspik-piam
mrtransport:Input data generation for the EDGE-Transport model
The mrtransport package contains data preprocessing for the EDGE-Transport model.
Maintained by Johanna Hoppe. Last updated 7 days ago.
17.5 match 4.84 score 3 dependentswilsonfreitas
bizdays:Business Days Calculations and Utilities
Business days calculations based on a list of holidays and nonworking weekdays. Quite useful for fixed income and derivatives pricing.
Maintained by Wilson Freitas. Last updated 2 months ago.
bizdaysbusiness-dayscalendarholidaysmarket-calendar
8.5 match 55 stars 9.89 score 426 scripts 3 dependentschristophsax
seasonalview:Graphical User Interface for Seasonal Adjustment
A graphical user interface to the 'seasonal' package and 'X-13ARIMA-SEATS', the U.S. Census Bureau's seasonal adjustment software.
Maintained by Christoph Sax. Last updated 5 months ago.
seasonal-adjustmentshinytime-series
14.6 match 22 stars 5.59 score 105 scriptsbraverock
PerformanceAnalytics:Econometric Tools for Performance and Risk Analysis
Collection of econometric functions for performance and risk analysis. In addition to standard risk and performance metrics, this package aims to aid practitioners and researchers in utilizing the latest research in analysis of non-normal return streams. In general, it is most tested on return (rather than price) data on a regular scale, but most functions will work with irregular return data as well, and increasing numbers of functions will work with P&L or price data where possible.
Maintained by Brian G. Peterson. Last updated 3 months ago.
5.1 match 222 stars 15.93 score 4.8k scripts 20 dependentsinsightsengineering
chevron:Standard TLGs for Clinical Trials Reporting
Provide standard tables, listings, and graphs (TLGs) libraries used in clinical trials. This package implements a structure to reformat the data with 'dunlin', create reporting tables using 'rtables' and 'tern' with standardized input arguments to enable quick generation of standard outputs. In addition, it also provides comprehensive data checks and script generation functionality.
Maintained by Joe Zhu. Last updated 25 days ago.
clinical-trialsgraphslistingsnestreportingtables
9.8 match 12 stars 8.24 score 12 scriptsewenharrison
finalfit:Quickly Create Elegant Regression Results Tables and Plots when Modelling
Generate regression results tables and plots in final format for publication. Explore models and export directly to PDF and 'Word' using 'RMarkdown'.
Maintained by Ewen Harrison. Last updated 7 months ago.
7.0 match 270 stars 11.43 score 1.0k scriptsellisp
ggseas:'stats' for Seasonal Adjustment on the Fly with 'ggplot2'
Provides 'ggplot2' 'stats' that estimate seasonally adjusted series and rolling summaries such as rolling average on the fly for time series.
Maintained by Peter Ellis. Last updated 7 years ago.
11.9 match 74 stars 6.68 score 129 scriptspaulnorthrop
chandwich:Chandler-Bate Sandwich Loglikelihood Adjustment
Performs adjustments of a user-supplied independence loglikelihood function using a robust sandwich estimator of the parameter covariance matrix, based on the methodology in Chandler and Bate (2007) <doi:10.1093/biomet/asm015>. This can be used for cluster correlated data when interest lies in the parameters of the marginal distributions or for performing inferences that are robust to certain types of model misspecification. Functions for profiling the adjusted loglikelihoods are also provided, as are functions for calculating and plotting confidence intervals, for single model parameters, and confidence regions, for pairs of model parameters. Nested models can be compared using an adjusted likelihood ratio test.
Maintained by Paul J. Northrop. Last updated 2 years ago.
clustered-dataclusterscomposite-likelihoodindependence-loglikelihoodmlerobustsandwichstatistical-inference
13.5 match 4 stars 5.88 score 18 scripts 7 dependentsmerck
metalite.ae:Adverse Events Analysis Using 'metalite'
Analyzes adverse events in clinical trials using the 'metalite' data structure. The package simplifies the workflow to create production-ready tables, listings, and figures discussed in the adverse events analysis chapters of "R for Clinical Study Reports and Submission" by Zhang et al. (2022) <https://r4csr.org/>.
Maintained by Yujie Zhao. Last updated 1 months ago.
8.4 match 18 stars 9.45 score 31 scripts 2 dependentsr4ss
r4ss:R Code for Stock Synthesis
A collection of R functions for use with Stock Synthesis, a fisheries stock assessment modeling platform written in ADMB by Dr. Richard D. Methot at the NOAA Northwest Fisheries Science Center. The functions include tools for summarizing and plotting results, manipulating files, visualizing model parameterizations, and various other common stock assessment tasks. This version of '{r4ss}' is compatible with Stock Synthesis versions 3.24 through 3.30 (specifically version 3.30.23.1, from December 2024). Support for 3.24 models is only through the core functions for reading output and plotting.
Maintained by Ian G. Taylor. Last updated 5 days ago.
fisheriesfisheries-stock-assessmentstock-synthesis
6.9 match 43 stars 11.38 score 1.0k scripts 2 dependentsr-causal
tipr:Tipping Point Analyses
The strength of evidence provided by epidemiological and observational studies is inherently limited by the potential for unmeasured confounding. We focus on three key quantities: the observed bound of the confidence interval closest to the null, the relationship between an unmeasured confounder and the outcome, for example a plausible residual effect size for an unmeasured continuous or binary confounder, and the relationship between an unmeasured confounder and the exposure, for example a realistic mean difference or prevalence difference for this hypothetical confounder between exposure groups. Building on the methods put forth by Cornfield et al. (1959), Bross (1966), Schlesselman (1978), Rosenbaum & Rubin (1983), Lin et al. (1998), Lash et al. (2009), Rosenbaum (1986), Cinelli & Hazlett (2020), VanderWeele & Ding (2017), and Ding & VanderWeele (2016), we can use these quantities to assess how an unmeasured confounder may tip our result to insignificance.
Maintained by Lucy DAgostino McGowan. Last updated 1 years ago.
15.4 match 35 stars 5.02 score 60 scriptsrjdverse
rjd3toolkit:Utility Functions around 'JDemetra+ 3.0'
R Interface to 'JDemetra+ 3.x' (<https://github.com/jdemetra>) time series analysis software. It provides functions allowing to model time series (create outlier regressors, user-defined calendar regressors, UCARIMA models...), to test the presence of trading days or seasonal effects and also to set specifications in pre-adjustment and benchmarking when using rjd3x13 or rjd3tramoseats.
Maintained by Tanguy Barthelemy. Last updated 5 months ago.
jdemetraseasonal-adjustmenttimeseriesopenjdk
13.1 match 5 stars 5.81 score 48 scripts 15 dependentsmaebruck
chantrics:Loglikelihood Adjustments for Econometric Models
Adjusts the loglikelihood of common econometric models for clustered data based on the estimation process suggested in Chandler and Bate (2007) <doi:10.1093/biomet/asm015>, using the 'chandwich' package <https://cran.r-project.org/package=chandwich>, and provides convenience functions for inference on the adjusted models.
Maintained by Theo Bruckbauer. Last updated 3 years ago.
clusteringeconometricslikelihoodlikelihood-ratio-testloglikelihood-adjustmentmaximum-likelihood
20.4 match 3.70 score 4 scriptstimginker
boiwsa:Seasonal Adjustment of Weekly Data
Perform seasonal adjustment of weekly data. The package provides a user-friendly interface for computing seasonally adjusted estimates of weekly data and includes functions for the creation of country-specific prior adjustment variables, as well as diagnostic tools to assess the quality of the adjustments. The method is described in more detail in Ginker (2023) <doi:10.13140/RG.2.2.12221.44000>.
Maintained by Tim Ginker. Last updated 1 months ago.
seasonal-adjustmentseasonalitytime-series-analysis
16.9 match 4 stars 4.48 score 3 scriptsr-forge
pcalg:Methods for Graphical Models and Causal Inference
Functions for causal structure learning and causal inference using graphical models. The main algorithms for causal structure learning are PC (for observational data without hidden variables), FCI and RFCI (for observational data with hidden variables), and GIES (for a mix of data from observational studies (i.e. observational data) and data from experiments involving interventions (i.e. interventional data) without hidden variables). For causal inference the IDA algorithm, the Generalized Backdoor Criterion (GBC), the Generalized Adjustment Criterion (GAC) and some related functions are implemented. Functions for incorporating background knowledge are provided.
Maintained by Markus Kalisch. Last updated 6 months ago.
10.2 match 7.32 score 700 scripts 19 dependentseasystats
datawizard:Easy Data Wrangling and Statistical Transformations
A lightweight package to assist in key steps involved in any data analysis workflow: (1) wrangling the raw data to get it in the needed form, (2) applying preprocessing steps and statistical transformations, and (3) compute statistical summaries of data properties and distributions. It is also the data wrangling backend for packages in 'easystats' ecosystem. References: Patil et al. (2022) <doi:10.21105/joss.04684>.
Maintained by Etienne Bacher. Last updated 10 days ago.
datadplyrhacktoberfestjanitormanipulationreshapetidyrwrangling
5.1 match 222 stars 14.71 score 436 scripts 119 dependentspecanproject
PEcAn.assim.batch:PEcAn Functions Used for Ecological Forecasts and Reanalysis
The Predictive Ecosystem Carbon Analyzer (PEcAn) is a scientific workflow management tool that is designed to simplify the management of model parameterization, execution, and analysis. The goal of PECAn is to streamline the interaction between data and models, and to improve the efficacy of scientific investigation.
Maintained by Istem Fer. Last updated 3 days ago.
bayesiancyberinfrastructuredata-assimilationdata-scienceecosystem-modelecosystem-scienceforecastingmeta-analysisnational-science-foundationpecanplantsjagscpp
7.4 match 216 stars 9.94 score 20 scripts 2 dependentsr-forge
robustbase:Basic Robust Statistics
"Essential" Robust Statistics. Tools allowing to analyze data with robust methods. This includes regression methodology including model selections and multivariate statistics where we strive to cover the book "Robust Statistics, Theory and Methods" by 'Maronna, Martin and Yohai'; Wiley 2006.
Maintained by Martin Maechler. Last updated 4 months ago.
5.5 match 13.33 score 1.7k scripts 480 dependentshaeran-cho
fnets:Factor-Adjusted Network Estimation and Forecasting for High-Dimensional Time Series
Implements methods for network estimation and forecasting of high-dimensional time series exhibiting strong serial and cross-sectional correlations under a factor-adjusted vector autoregressive model. See Barigozzi, Cho and Owens (2024) <doi:10.1080/07350015.2023.2257270> for further descriptions of FNETS methodology and Owens, Cho and Barigozzi (2024) <arXiv:2301.11675> accompanying the R package.
Maintained by Haeran Cho. Last updated 4 months ago.
factor-modelsforecastinghigh-dimensionalnetwork-estimationtime-seriesvector-autoregressioncpp
13.6 match 7 stars 5.33 score 28 scriptsr-causal
ggdag:Analyze and Create Elegant Directed Acyclic Graphs
Tidy, analyze, and plot directed acyclic graphs (DAGs). 'ggdag' is built on top of 'dagitty', an R package that uses the 'DAGitty' web tool (<https://dagitty.net/>) for creating and analyzing DAGs. 'ggdag' makes it easy to tidy and plot 'dagitty' objects using 'ggplot2' and 'ggraph', as well as common analytic and graphical functions, such as determining adjustment sets and node relationships.
Maintained by Malcolm Barrett. Last updated 8 months ago.
causal-inferencedagggplot-extension
6.1 match 443 stars 11.78 score 1.8k scripts 5 dependentsacorg
Racmacs:Antigenic Cartography Macros
A toolkit for making antigenic maps from immunological assay data, in order to quantify and visualize antigenic differences between different pathogen strains as described in Smith et al. (2004) <doi:10.1126/science.1097211> and used in the World Health Organization influenza vaccine strain selection process. Additional functions allow for the diagnostic evaluation of antigenic maps and an interactive viewer is provided to explore antigenic relationships amongst several strains and incorporate the visualization of associated genetic information.
Maintained by Sam Wilks. Last updated 9 months ago.
8.9 match 21 stars 8.06 score 362 scriptscefet-rj-dal
daltoolbox:Leveraging Experiment Lines to Data Analytics
The natural increase in the complexity of current research experiments and data demands better tools to enhance productivity in Data Analytics. The package is a framework designed to address the modern challenges in data analytics workflows. The package is inspired by Experiment Line concepts. It aims to provide seamless support for users in developing their data mining workflows by offering a uniform data model and method API. It enables the integration of various data mining activities, including data preprocessing, classification, regression, clustering, and time series prediction. It also offers options for hyper-parameter tuning and supports integration with existing libraries and languages. Overall, the package provides researchers with a comprehensive set of functionalities for data science, promoting ease of use, extensibility, and integration with various tools and libraries. Information on Experiment Line is based on Ogasawara et al. (2009) <doi:10.1007/978-3-642-02279-1_20>.
Maintained by Eduardo Ogasawara. Last updated 1 months ago.
10.8 match 1 stars 6.65 score 536 scripts 4 dependentsjchiquet
aricode:Efficient Computations of Standard Clustering Comparison Measures
Implements an efficient O(n) algorithm based on bucket-sorting for fast computation of standard clustering comparison measures. Available measures include adjusted Rand index (ARI), normalized information distance (NID), normalized mutual information (NMI), adjusted mutual information (AMI), normalized variation information (NVI) and entropy, as described in Vinh et al (2009) <doi:10.1145/1553374.1553511>. Include AMI (Adjusted Mutual Information) since version 0.1.2, a modified version of ARI (MARI), as described in Sundqvist et al. <doi:10.1007/s00180-022-01230-7> and simple Chi-square distance since version 1.0.0.
Maintained by Julien Chiquet. Last updated 1 years ago.
bucket-sortclusteringclustering-comparison-measurescpp
8.6 match 25 stars 8.15 score 542 scripts 14 dependentsallenzhuaz
MHTmult:Multiple Hypotheses Testing for Multiple Families/Groups Structure
A Comprehensive tool for almost all existing multiple testing methods for multiple families. The package summarizes the existing methods for multiple families multiple testing procedures (MTPs) such as double FDR, group Benjamini-Hochberg (GBH) procedure and average FDR controlling procedure. The package also provides some novel multiple testing procedures using selective inference idea.
Maintained by Yalin Zhu. Last updated 3 years ago.
hierarchical-datamultiple-testingmultiplicity
25.8 match 2.70 score 9 scriptsbioc
EnhancedVolcano:Publication-ready volcano plots with enhanced colouring and labeling
Volcano plots represent a useful way to visualise the results of differential expression analyses. Here, we present a highly-configurable function that produces publication-ready volcano plots. EnhancedVolcano will attempt to fit as many point labels in the plot window as possible, thus avoiding 'clogging' up the plot with labels that could not otherwise have been read. Other functionality allows the user to identify up to 4 different types of attributes in the same plot space via colour, shape, size, and shade parameter configurations.
Maintained by Kevin Blighe. Last updated 5 months ago.
rnaseqgeneexpressiontranscriptiondifferentialexpressionimmunooncology
5.9 match 422 stars 11.68 score 2.7k scriptstherneau
survival:Survival Analysis
Contains the core survival analysis routines, including definition of Surv objects, Kaplan-Meier and Aalen-Johansen (multi-state) curves, Cox models, and parametric accelerated failure time models.
Maintained by Terry M Therneau. Last updated 3 months ago.
3.3 match 400 stars 20.43 score 29k scripts 3.9k dependentskornl
mutoss:Unified Multiple Testing Procedures
Designed to ease the application and comparison of multiple hypothesis testing procedures for FWER, gFWER, FDR and FDX. Methods are standardized and usable by the accompanying 'mutossGUI'.
Maintained by Kornelius Rohmeyer. Last updated 12 months ago.
7.7 match 4 stars 8.44 score 24 scripts 16 dependentsstan-dev
rstanarm:Bayesian Applied Regression Modeling via Stan
Estimates previously compiled regression models using the 'rstan' package, which provides the R interface to the Stan C++ library for Bayesian estimation. Users specify models via the customary R syntax with a formula and data.frame plus some additional arguments for priors.
Maintained by Ben Goodrich. Last updated 9 months ago.
bayesianbayesian-data-analysisbayesian-inferencebayesian-methodsbayesian-statisticsmultilevel-modelsrstanrstanarmstanstatistical-modelingcpp
4.1 match 393 stars 15.68 score 5.0k scripts 13 dependentsopenpharma
graphicalMCP:Graphical Multiple Comparison Procedures
Multiple comparison procedures (MCPs) control the familywise error rate in clinical trials. Graphical MCPs include many commonly used procedures as special cases; see Bretz et al. (2011) <doi:10.1002/bimj.201000239>, Lu (2016) <doi:10.1002/sim.6985>, and Xi et al. (2017) <doi:10.1002/bimj.201600233>. This package is a low-dependency implementation of graphical MCPs which allow mixed types of tests. It also includes power simulations and visualization of graphical MCPs.
Maintained by Dong Xi. Last updated 4 months ago.
8.8 match 17 stars 7.35 score 18 scriptsbioc
lumi:BeadArray Specific Methods for Illumina Methylation and Expression Microarrays
The lumi package provides an integrated solution for the Illumina microarray data analysis. It includes functions of Illumina BeadStudio (GenomeStudio) data input, quality control, BeadArray-specific variance stabilization, normalization and gene annotation at the probe level. It also includes the functions of processing Illumina methylation microarrays, especially Illumina Infinium methylation microarrays.
Maintained by Lei Huang. Last updated 5 months ago.
microarrayonechannelpreprocessingdnamethylationqualitycontroltwochannel
10.3 match 6.27 score 294 scripts 5 dependentsinsightsengineering
rbmi:Reference Based Multiple Imputation
Implements standard and reference based multiple imputation methods for continuous longitudinal endpoints (Gower-Page et al. (2022) <doi:10.21105/joss.04251>). In particular, this package supports deterministic conditional mean imputation and jackknifing as described in Wolbers et al. (2022) <doi:10.1002/pst.2234>, Bayesian multiple imputation as described in Carpenter et al. (2013) <doi:10.1080/10543406.2013.834911>, and bootstrapped maximum likelihood imputation as described in von Hippel and Bartlett (2021) <doi: 10.1214/20-STS793>.
Maintained by Isaac Gravestock. Last updated 24 days ago.
7.2 match 18 stars 8.78 score 33 scripts 1 dependentsbusiness-science
anomalize:Tidy Anomaly Detection
The 'anomalize' package enables a "tidy" workflow for detecting anomalies in data. The main functions are time_decompose(), anomalize(), and time_recompose(). When combined, it's quite simple to decompose time series, detect anomalies, and create bands separating the "normal" data from the anomalous data at scale (i.e. for multiple time series). Time series decomposition is used to remove trend and seasonal components via the time_decompose() function and methods include seasonal decomposition of time series by Loess ("stl") and seasonal decomposition by piecewise medians ("twitter"). The anomalize() function implements two methods for anomaly detection of residuals including using an inner quartile range ("iqr") and generalized extreme studentized deviation ("gesd"). These methods are based on those used in the 'forecast' package and the Twitter 'AnomalyDetection' package. Refer to the associated functions for specific references for these methods.
Maintained by Matt Dancho. Last updated 1 years ago.
anomalyanomaly-detectiondecompositiondetect-anomaliesiqrtime-series
6.6 match 339 stars 9.56 score 332 scriptsmayoverse
arsenal:An Arsenal of 'R' Functions for Large-Scale Statistical Summaries
An Arsenal of 'R' functions for large-scale statistical summaries, which are streamlined to work within the latest reporting tools in 'R' and 'RStudio' and which use formulas and versatile summary statistics for summary tables and models. The primary functions include tableby(), a Table-1-like summary of multiple variable types 'by' the levels of one or more categorical variables; paired(), a Table-1-like summary of multiple variable types paired across two time points; modelsum(), which performs simple model fits on one or more endpoints for many variables (univariate or adjusted for covariates); freqlist(), a powerful frequency table across many categorical variables; comparedf(), a function for comparing data.frames; and write2(), a function to output tables to a document.
Maintained by Ethan Heinzen. Last updated 7 months ago.
baseline-characteristicsdescriptive-statisticsmodelingpaired-comparisonsreportingstatisticstableone
4.7 match 225 stars 13.45 score 1.2k scripts 16 dependentsacclab
dabestr:Data Analysis using Bootstrap-Coupled Estimation
Data Analysis using Bootstrap-Coupled ESTimation. Estimation statistics is a simple framework that avoids the pitfalls of significance testing. It uses familiar statistical concepts: means, mean differences, and error bars. More importantly, it focuses on the effect size of one's experiment/intervention, as opposed to a false dichotomy engendered by P values. An estimation plot has two key features: 1. It presents all datapoints as a swarmplot, which orders each point to display the underlying distribution. 2. It presents the effect size as a bootstrap 95% confidence interval on a separate but aligned axes. Estimation plots are introduced in Ho et al., Nature Methods 2019, 1548-7105. <doi:10.1038/s41592-019-0470-3>. The free-to-view PDF is located at <https://www.nature.com/articles/s41592-019-0470-3.epdf?author_access_token=Euy6APITxsYA3huBKOFBvNRgN0jAjWel9jnR3ZoTv0Pr6zJiJ3AA5aH4989gOJS_dajtNr1Wt17D0fh-t4GFcvqwMYN03qb8C33na_UrCUcGrt-Z0J9aPL6TPSbOxIC-pbHWKUDo2XsUOr3hQmlRew%3D%3D>.
Maintained by Yishan Mai. Last updated 1 years ago.
data-analysisdata-visualizationestimationstatistics
6.3 match 214 stars 9.80 score 142 scriptsmlr-org
mlr3torch:Deep Learning with 'mlr3'
Deep Learning library that extends the mlr3 framework by building upon the 'torch' package. It allows to conveniently build, train, and evaluate deep learning models without having to worry about low level details. Custom architectures can be created using the graph language defined in 'mlr3pipelines'.
Maintained by Sebastian Fischer. Last updated 1 months ago.
data-sciencedeep-learningmachine-learningmlr3torch
8.0 match 42 stars 7.63 score 78 scriptscran
epiR:Tools for the Analysis of Epidemiological Data
Tools for the analysis of epidemiological and surveillance data. Contains functions for directly and indirectly adjusting measures of disease frequency, quantifying measures of association on the basis of single or multiple strata of count data presented in a contingency table, computation of confidence intervals around incidence risk and incidence rate estimates and sample size calculations for cross-sectional, case-control and cohort studies. Surveillance tools include functions to calculate an appropriate sample size for 1- and 2-stage representative freedom surveys, functions to estimate surveillance system sensitivity and functions to support scenario tree modelling analyses.
Maintained by Mark Stevenson. Last updated 2 months ago.
7.4 match 10 stars 8.18 score 10 dependentsbioc
stageR:stageR: stage-wise analysis of high throughput gene expression data in R
The stageR package allows automated stage-wise analysis of high-throughput gene expression data. The method is published in Genome Biology at https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1277-0
Maintained by Koen Van den Berge. Last updated 5 months ago.
10.6 match 5.72 score 87 scriptsguido-s
metasens:Statistical Methods for Sensitivity Analysis in Meta-Analysis
The following methods are implemented to evaluate how sensitive the results of a meta-analysis are to potential bias in meta-analysis and to support Schwarzer et al. (2015) <DOI:10.1007/978-3-319-21416-0>, Chapter 5 'Small-Study Effects in Meta-Analysis': - Copas selection model described in Copas & Shi (2001) <DOI:10.1177/096228020101000402>; - limit meta-analysis by Rรผcker et al. (2011) <DOI:10.1093/biostatistics/kxq046>; - upper bound for outcome reporting bias by Copas & Jackson (2004) <DOI:10.1111/j.0006-341X.2004.00161.x>; - imputation methods for missing binary data by Gamble & Hollis (2005) <DOI:10.1016/j.jclinepi.2004.09.013> and Higgins et al. (2008) <DOI:10.1177/1740774508091600>; - LFK index test and Doi plot by Furuya-Kanamori et al. (2018) <DOI:10.1097/XEB.0000000000000141>.
Maintained by Guido Schwarzer. Last updated 20 hours ago.
adjustmentmeta-analysispublication-biasrstudio
10.0 match 8 stars 6.01 score 53 scriptseasystats
performance:Assessment of Regression Models Performance
Utilities for computing measures to assess model quality, which are not directly provided by R's 'base' or 'stats' packages. These include e.g. measures like r-squared, intraclass correlation coefficient (Nakagawa, Johnson & Schielzeth (2017) <doi:10.1098/rsif.2017.0213>), root mean squared error or functions to check models for overdispersion, singularity or zero-inflation and more. Functions apply to a large variety of regression models, including generalized linear models, mixed effects models and Bayesian models. References: Lรผdecke et al. (2021) <doi:10.21105/joss.03139>.
Maintained by Daniel Lรผdecke. Last updated 19 days ago.
aiceasystatshacktoberfestloomachine-learningmixed-modelsmodelsperformancer2statistics
3.7 match 1.1k stars 16.17 score 4.3k scripts 47 dependentsaqlt
ggdemetra:'ggplot2' Extension for Seasonal and Trading Day Adjustment with 'RJDemetra'
Provides 'ggplot2' functions to return the results of seasonal and trading day adjustment made by 'RJDemetra'. 'RJDemetra' is an 'R' interface around 'JDemetra+' (<https://github.com/jdemetra/jdemetra-app>), the seasonal adjustment software officially recommended to the members of the European Statistical System and the European System of Central Banks.
Maintained by Alain Quartier-la-Tente. Last updated 7 months ago.
9.7 match 12 stars 6.06 score 16 scripts 1 dependentsspatstat
spatstat.explore:Exploratory Data Analysis for the 'spatstat' Family
Functionality for exploratory data analysis and nonparametric analysis of spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported.
Maintained by Adrian Baddeley. Last updated 6 hours ago.
cluster-detectionconfidence-intervalshypothesis-testingk-functionroc-curvesscan-statisticssignificance-testingsimulation-envelopesspatial-analysisspatial-data-analysisspatial-sharpeningspatial-smoothingspatial-statistics
5.8 match 1 stars 10.18 score 67 scripts 149 dependentsallenzhuaz
FixSeqMTP:Fixed Sequence Multiple Testing Procedures
Several generalized / directional Fixed Sequence Multiple Testing Procedures (FSMTPs) are developed for testing a sequence of pre-ordered hypotheses while controlling the FWER, FDR and Directional Error (mdFWER). All three FWER controlling generalized FSMTPs are designed under arbitrary dependence, which allow any number of acceptances. Two FDR controlling generalized FSMTPs are respectively designed under arbitrary dependence and independence, which allow more but a given number of acceptances. Two mdFWER controlling directional FSMTPs are respectively designed under arbitrary dependence and independence, which can also make directional decisions based on the signs of the test statistics. The main functions for each proposed generalized / directional FSMTPs are designed to calculate adjusted p-values and critical values, respectively. For users' convenience, the functions also provide the output option for printing decision rules.
Maintained by Yalin Zhu. Last updated 6 years ago.
multiple-testingpre-ordersequential-testing
18.0 match 3 stars 3.22 score 11 scriptshubbardalex
autostsm:Automatic Structural Time Series Models
Automatic model selection for structural time series decomposition into trend, cycle, and seasonal components, plus optionality for structural interpolation, using the Kalman filter. Koopman, Siem Jan and Marius Ooms (2012) "Forecasting Economic Time Series Using Unobserved Components Time Series Models" <doi:10.1093/oxfordhb/9780195398649.013.0006>. Kim, Chang-Jin and Charles R. Nelson (1999) "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications" <doi:10.7551/mitpress/6444.001.0001><http://econ.korea.ac.kr/~cjkim/>.
Maintained by Alex Hubbard. Last updated 9 months ago.
16.3 match 3.55 score 29 scriptsmacroeconomicdata
dateutils:Date Utils
Utilities for mixed frequency data. In particular, use to aggregate and normalize tabular mixed frequency data, index dates to end of period, and seasonally adjust tabular data.
Maintained by Seth Leonard. Last updated 3 years ago.
data-processingeconometricstime-seriesopenblascpp
10.9 match 3 stars 5.17 score 49 scriptsbioc
trackViewer:A R/Bioconductor package with web interface for drawing elegant interactive tracks or lollipop plot to facilitate integrated analysis of multi-omics data
Visualize mapped reads along with annotation as track layers for NGS dataset such as ChIP-seq, RNA-seq, miRNA-seq, DNA-seq, SNPs and methylation data.
Maintained by Jianhong Ou. Last updated 2 months ago.
6.4 match 8.71 score 145 scripts 2 dependentsbranchlab
metasnf:Meta Clustering with Similarity Network Fusion
Framework to facilitate patient subtyping with similarity network fusion and meta clustering. The similarity network fusion (SNF) algorithm was introduced by Wang et al. (2014) in <doi:10.1038/nmeth.2810>. SNF is a data integration approach that can transform high-dimensional and diverse data types into a single similarity network suitable for clustering with minimal loss of information from each initial data source. The meta clustering approach was introduced by Caruana et al. (2006) in <doi:10.1109/ICDM.2006.103>. Meta clustering involves generating a wide range of cluster solutions by adjusting clustering hyperparameters, then clustering the solutions themselves into a manageable number of qualitatively similar solutions, and finally characterizing representative solutions to find ones that are best for the user's specific context. This package provides a framework to easily transform multi-modal data into a wide range of similarity network fusion-derived cluster solutions as well as to visualize, characterize, and validate those solutions. Core package functionality includes easy customization of distance metrics, clustering algorithms, and SNF hyperparameters to generate diverse clustering solutions; calculation and plotting of associations between features, between patients, and between cluster solutions; and standard cluster validation approaches including resampled measures of cluster stability, standard metrics of cluster quality, and label propagation to evaluate generalizability in unseen data. Associated vignettes guide the user through using the package to identify patient subtypes while adhering to best practices for unsupervised learning.
Maintained by Prashanth S Velayudhan. Last updated 5 days ago.
bioinformaticsclusteringmetaclusteringsnf
6.8 match 8 stars 8.21 score 30 scriptsbioc
sva:Surrogate Variable Analysis
The sva package contains functions for removing batch effects and other unwanted variation in high-throughput experiment. Specifically, the sva package contains functions for the identifying and building surrogate variables for high-dimensional data sets. Surrogate variables are covariates constructed directly from high-dimensional data (like gene expression/RNA sequencing/methylation/brain imaging data) that can be used in subsequent analyses to adjust for unknown, unmodeled, or latent sources of noise. The sva package can be used to remove artifacts in three ways: (1) identifying and estimating surrogate variables for unknown sources of variation in high-throughput experiments (Leek and Storey 2007 PLoS Genetics,2008 PNAS), (2) directly removing known batch effects using ComBat (Johnson et al. 2007 Biostatistics) and (3) removing batch effects with known control probes (Leek 2014 biorXiv). Removing batch effects and using surrogate variables in differential expression analysis have been shown to reduce dependence, stabilize error rate estimates, and improve reproducibility, see (Leek and Storey 2007 PLoS Genetics, 2008 PNAS or Leek et al. 2011 Nat. Reviews Genetics).
Maintained by Jeffrey T. Leek. Last updated 5 months ago.
immunooncologymicroarraystatisticalmethodpreprocessingmultiplecomparisonsequencingrnaseqbatcheffectnormalization
5.6 match 10.05 score 3.2k scripts 50 dependentsr-spatial
spdep:Spatial Dependence: Weighting Schemes, Statistics
A collection of functions to create spatial weights matrix objects from polygon 'contiguities', from point patterns by distance and tessellations, for summarizing these objects, and for permitting their use in spatial data analysis, including regional aggregation by minimum spanning tree; a collection of tests for spatial 'autocorrelation', including global 'Morans I' and 'Gearys C' proposed by 'Cliff' and 'Ord' (1973, ISBN: 0850860369) and (1981, ISBN: 0850860814), 'Hubert/Mantel' general cross product statistic, Empirical Bayes estimates and 'Assunรงรฃo/Reis' (1999) <doi:10.1002/(SICI)1097-0258(19990830)18:16%3C2147::AID-SIM179%3E3.0.CO;2-I> Index, 'Getis/Ord' G ('Getis' and 'Ord' 1992) <doi:10.1111/j.1538-4632.1992.tb00261.x> and multicoloured join count statistics, 'APLE' ('Li 'et al.' ) <doi:10.1111/j.1538-4632.2007.00708.x>, local 'Moran's I', 'Gearys C' ('Anselin' 1995) <doi:10.1111/j.1538-4632.1995.tb00338.x> and 'Getis/Ord' G ('Ord' and 'Getis' 1995) <doi:10.1111/j.1538-4632.1995.tb00912.x>, 'saddlepoint' approximations ('Tiefelsdorf' 2002) <doi:10.1111/j.1538-4632.2002.tb01084.x> and exact tests for global and local 'Moran's I' ('Bivand et al.' 2009) <doi:10.1016/j.csda.2008.07.021> and 'LOSH' local indicators of spatial heteroscedasticity ('Ord' and 'Getis') <doi:10.1007/s00168-011-0492-y>. The implementation of most of these measures is described in 'Bivand' and 'Wong' (2018) <doi:10.1007/s11749-018-0599-x>, with further extensions in 'Bivand' (2022) <doi:10.1111/gean.12319>. 'Lagrange' multiplier tests for spatial dependence in linear models are provided ('Anselin et al'. 1996) <doi:10.1016/0166-0462(95)02111-6>, as are 'Rao' score tests for hypothesised spatial 'Durbin' models based on linear models ('Koley' and 'Bera' 2023) <doi:10.1080/17421772.2023.2256810>. A local indicators for categorical data (LICD) implementation based on 'Carrer et al.' (2021) <doi:10.1016/j.jas.2020.105306> and 'Bivand et al.' (2017) <doi:10.1016/j.spasta.2017.03.003> was added in 1.3-7. From 'spdep' and 'spatialreg' versions >= 1.2-1, the model fitting functions previously present in this package are defunct in 'spdep' and may be found in 'spatialreg'.
Maintained by Roger Bivand. Last updated 19 days ago.
spatial-autocorrelationspatial-dependencespatial-weights
3.4 match 131 stars 16.62 score 6.0k scripts 107 dependentsxsswang
remiod:Reference-Based Multiple Imputation for Ordinal/Binary Response
Reference-based multiple imputation of ordinal and binary responses under Bayesian framework, as described in Wang and Liu (2022) <arXiv:2203.02771>. Methods for missing-not-at-random include Jump-to-Reference (J2R), Copy Reference (CR), and Delta Adjustment which can generate tipping point analysis.
Maintained by Tony Wang. Last updated 2 years ago.
bayesiancontrol-basedcopy-referencedelta-adjustmentgeneralized-linear-modelsglmjagsjump-to-referencemcmcmissing-at-randommissing-datamissing-not-at-randommultiple-imputationnon-ignorableordinal-regressionpattern-mixture-modelreference-basedstatisticscpp
12.9 match 4.30 score 3 scriptsadeverse
ade4:Analysis of Ecological Data: Exploratory and Euclidean Methods in Environmental Sciences
Tools for multivariate data analysis. Several methods are provided for the analysis (i.e., ordination) of one-table (e.g., principal component analysis, correspondence analysis), two-table (e.g., coinertia analysis, redundancy analysis), three-table (e.g., RLQ analysis) and K-table (e.g., STATIS, multiple coinertia analysis). The philosophy of the package is described in Dray and Dufour (2007) <doi:10.18637/jss.v022.i04>.
Maintained by Aurรฉlie Siberchicot. Last updated 13 days ago.
3.7 match 39 stars 14.96 score 2.2k scripts 256 dependentscorentinjgosling
metaConvert:An Automatic Suite for Estimation of Various Effect Size Measures
Automatically estimate 11 effect size measures from a well-formatted dataset. Various other functions can help, for example, removing dependency between several effect sizes, or identifying differences between two datasets. This package is mainly designed to assist in conducting a systematic review with a meta-analysis but can be useful to any researcher interested in estimating an effect size.
Maintained by Corentin J. Gosling. Last updated 4 months ago.
17.3 match 3.18 score 3 scriptseasystats
parameters:Processing of Model Parameters
Utilities for processing the parameters of various statistical models. Beyond computing p values, CIs, and other indices for a wide variety of models (see list of supported models using the function 'insight::supported_models()'), this package implements features like bootstrapping or simulating of parameters and models, feature reduction (feature extraction and variable selection) as well as functions to describe data and variable characteristics (e.g. skewness, kurtosis, smoothness or distribution).
Maintained by Daniel Lรผdecke. Last updated 3 days ago.
betabootstrapciconfidence-intervalsdata-reductioneasystatsfafeature-extractionfeature-reductionhacktoberfestparameterspcapvaluesregression-modelsrobust-statisticsstandardizestandardized-estimatesstatistical-models
3.5 match 453 stars 15.65 score 1.8k scripts 56 dependentstim-tu
weibulltools:Statistical Methods for Life Data Analysis
Provides statistical methods and visualizations that are often used in reliability engineering. Comprises a compact and easily accessible set of methods and visualization tools that make the examination and adjustment as well as the analysis and interpretation of field data (and bench tests) as simple as possible. Non-parametric estimators like Median Ranks, Kaplan-Meier (Abernethy, 2006, <ISBN:978-0-9653062-3-2>), Johnson (Johnson, 1964, <ISBN:978-0444403223>), and Nelson-Aalen for failure probability estimation within samples that contain failures as well as censored data are included. The package supports methods like Maximum Likelihood and Rank Regression, (Genschel and Meeker, 2010, <DOI:10.1080/08982112.2010.503447>) for the estimation of multiple parametric lifetime distributions, as well as the computation of confidence intervals of quantiles and probabilities using the delta method related to Fisher's confidence intervals (Meeker and Escobar, 1998, <ISBN:9780471673279>) and the beta-binomial confidence bounds. If desired, mixture model analysis can be done with segmented regression and the EM algorithm. Besides the well-known Weibull analysis, the package also contains Monte Carlo methods for the correction and completion of imprecisely recorded or unknown lifetime characteristics. (Verband der Automobilindustrie e.V. (VDA), 2016, <ISSN:0943-9412>). Plots are created statically ('ggplot2') or interactively ('plotly') and can be customized with functions of the respective visualization package. The graphical technique of probability plotting as well as the addition of regression lines and confidence bounds to existing plots are supported.
Maintained by Tim-Gunnar Hensel. Last updated 2 years ago.
field-data-analysisinteractive-visualizationsplotlyreliability-analysisweibull-analysisweibulltoolsopenblascpp
8.9 match 13 stars 6.15 score 54 scriptseheinzen
elo:Ranking Teams by Elo Rating and Comparable Methods
A flexible framework for calculating Elo ratings and resulting rankings of any two-team-per-matchup system (chess, sports leagues, 'Go', etc.). This implementation is capable of evaluating a variety of matchups, Elo rating updates, and win probabilities, all based on the basic Elo rating system. It also includes methods to benchmark performance, including logistic regression and Markov chain models.
Maintained by Ethan Heinzen. Last updated 1 years ago.
eloelo-ratinglogistic-regressionmarkov-chainmarkov-modelrankingsports-analyticscpp
7.7 match 37 stars 7.05 score 153 scriptspcbrendel
multibias:Simultaneous Multi-Bias Adjustment
Quantify the causal effect of a binary exposure on a binary outcome with adjustment for multiple biases. The functions can simultaneously adjust for any combination of uncontrolled confounding, exposure/outcome misclassification, and selection bias. The underlying method generalizes the concept of combining inverse probability of selection weighting with predictive value weighting. Simultaneous multi-bias analysis can be used to enhance the validity and transparency of real-world evidence obtained from observational, longitudinal studies. Based on the work from Paul Brendel, Aracelis Torres, and Onyebuchi Arah (2023) <doi:10.1093/ije/dyad001>.
Maintained by Paul Brendel. Last updated 21 days ago.
causal-inferencecausal-modelsepidemiology
9.9 match 5.34 score 7 scriptsanimint
animint2:Animated Interactive Grammar of Graphics
Functions are provided for defining animated, interactive data visualizations in R code, and rendering on a web page. The 2018 Journal of Computational and Graphical Statistics paper, <doi:10.1080/10618600.2018.1513367> describes the concepts implemented.
Maintained by Toby Hocking. Last updated 28 days ago.
5.8 match 64 stars 8.87 score 173 scriptsvictormesquita40
DFA:Detrended Fluctuation Analysis
Contains the Detrended Fluctuation Analysis (DFA), Detrended Cross-Correlation Analysis (DCCA), Detrended Cross-Correlation Coefficient (rhoDCCA), Delta Amplitude Detrended Cross-Correlation Coefficient (DeltarhoDCCA), log amplitude Detrended Fluctuation Analysis (DeltalogDFA), two DFA automatic methods for identification of crossover points and a Deltalog automatic method for identification of reference channels.
Maintained by Victor Barreto Mesquita. Last updated 1 years ago.
12.7 match 4.04 score 22 scriptskbose28
FarmSelect:Factor Adjusted Robust Model Selection
Implements a consistent model selection strategy for high dimensional sparse regression when the covariate dependence can be reduced through factor models. By separating the latent factors from idiosyncratic components, the problem is transformed from model selection with highly correlated covariates to that with weakly correlated variables. It is appropriate for cases where we have many variables compared to the number of samples. Moreover, it implements a robust procedure to estimate distribution parameters wherever possible, hence being suitable for cases when the underlying distribution deviates from Gaussianity. See the paper on the 'FarmSelect' method, Fan et al.(2017) <arXiv:1612.08490>, for detailed description of methods and further references.
Maintained by Kaizheng Wang. Last updated 6 years ago.
11.3 match 7 stars 4.54 score 8 scriptsbioc
SpotClean:SpotClean adjusts for spot swapping in spatial transcriptomics data
SpotClean is a computational method to adjust for spot swapping in spatial transcriptomics data. Recent spatial transcriptomics experiments utilize slides containing thousands of spots with spot-specific barcodes that bind mRNA. Ideally, unique molecular identifiers at a spot measure spot-specific expression, but this is often not the case due to bleed from nearby spots, an artifact we refer to as spot swapping. SpotClean is able to estimate the contamination rate in observed data and decontaminate the spot swapping effect, thus increase the sensitivity and precision of downstream analyses.
Maintained by Zijian Ni. Last updated 5 months ago.
dataimportrnaseqsequencinggeneexpressionspatialsinglecelltranscriptomicspreprocessingrna-seqspatial-transcriptomics
7.9 match 28 stars 6.48 score 36 scriptsdaattali
timevis:Create Interactive Timeline Visualizations in R
Create rich and fully interactive timeline visualizations. Timelines can be included in Shiny apps or R markdown documents. 'timevis' includes an extensive API to manipulate a timeline after creation, and supports getting data out of the visualization into R. Based on the 'vis.js' Timeline JavaScript library.
Maintained by Dean Attali. Last updated 7 months ago.
5.4 match 671 stars 9.41 score 410 scripts 5 dependentspln-team
PLNmodels:Poisson Lognormal Models
The Poisson-lognormal model and variants (Chiquet, Mariadassou and Robin, 2021 <doi:10.3389/fevo.2021.588292>) can be used for a variety of multivariate problems when count data are at play, including principal component analysis for count data, discriminant analysis, model-based clustering and network inference. Implements variational algorithms to fit such models accompanied with a set of functions for visualization and diagnostic.
Maintained by Julien Chiquet. Last updated 5 days ago.
count-datamultivariate-analysisnetwork-inferencepcapoisson-lognormal-modelopenblascpp
5.3 match 56 stars 9.50 score 226 scriptsdbasu-umass
bate:Computes Bias-Adjusted Treatment Effect
Compute bounds for the treatment effect after adjusting for the presence of omitted variables in linear econometric models, according to the method of Basu (2022) <arXiv:2203.12431>. You supply the data, identify the outcome and treatment variables and additional regressors. The main functions will compute bounds for the bias-adjusted treatment effect. Many plot functions allow easy visualization of results.
Maintained by Deepankar Basu. Last updated 2 years ago.
13.7 match 3.70 score 2 scriptsguido-s
netmeta:Network Meta-Analysis using Frequentist Methods
A comprehensive set of functions providing frequentist methods for network meta-analysis (Balduzzi et al., 2023) <doi:10.18637/jss.v106.i02> and supporting Schwarzer et al. (2015) <doi:10.1007/978-3-319-21416-0>, Chapter 8 "Network Meta-Analysis": - frequentist network meta-analysis following Rรผcker (2012) <doi:10.1002/jrsm.1058>; - additive network meta-analysis for combinations of treatments (Rรผcker et al., 2020) <doi:10.1002/bimj.201800167>; - network meta-analysis of binary data using the Mantel-Haenszel or non-central hypergeometric distribution method (Efthimiou et al., 2019) <doi:10.1002/sim.8158>, or penalised logistic regression (Evrenoglou et al., 2022) <doi:10.1002/sim.9562>; - rankograms and ranking of treatments by the Surface under the cumulative ranking curve (SUCRA) (Salanti et al., 2013) <doi:10.1016/j.jclinepi.2010.03.016>; - ranking of treatments using P-scores (frequentist analogue of SUCRAs without resampling) according to Rรผcker & Schwarzer (2015) <doi:10.1186/s12874-015-0060-8>; - split direct and indirect evidence to check consistency (Dias et al., 2010) <doi:10.1002/sim.3767>, (Efthimiou et al., 2019) <doi:10.1002/sim.8158>; - league table with network meta-analysis results; - 'comparison-adjusted' funnel plot (Chaimani & Salanti, 2012) <doi:10.1002/jrsm.57>; - net heat plot and design-based decomposition of Cochran's Q according to Krahn et al. (2013) <doi:10.1186/1471-2288-13-35>; - measures characterizing the flow of evidence between two treatments by Kรถnig et al. (2013) <doi:10.1002/sim.6001>; - automated drawing of network graphs described in Rรผcker & Schwarzer (2016) <doi:10.1002/jrsm.1143>; - partial order of treatment rankings ('poset') and Hasse diagram for 'poset' (Carlsen & Bruggemann, 2014) <doi:10.1002/cem.2569>; (Rรผcker & Schwarzer, 2017) <doi:10.1002/jrsm.1270>; - contribution matrix as described in Papakonstantinou et al. (2018) <doi:10.12688/f1000research.14770.3> and Davies et al. (2022) <doi:10.1002/sim.9346>; - subgroup network meta-analysis.
Maintained by Guido Schwarzer. Last updated 3 days ago.
meta-analysisnetwork-meta-analysisrstudio
4.3 match 33 stars 11.82 score 199 scripts 10 dependentsepiforecasts
EpiNow2:Estimate Real-Time Case Counts and Time-Varying Epidemiological Parameters
Estimates the time-varying reproduction number, rate of spread, and doubling time using a range of open-source tools (Abbott et al. (2020) <doi:10.12688/wellcomeopenres.16006.1>), and current best practices (Gostic et al. (2020) <doi:10.1101/2020.06.18.20134858>). It aims to help users avoid some of the limitations of naive implementations in a framework that is informed by community feedback and is actively supported.
Maintained by Sebastian Funk. Last updated 26 days ago.
backcalculationcovid-19gaussian-processesopen-sourcereproduction-numberstancpp
4.2 match 120 stars 11.88 score 210 scriptsjlaake
RMark:R Code for Mark Analysis
An interface to the software package MARK that constructs input files for MARK and extracts the output. MARK was developed by Gary White and is freely available at <http://www.phidot.org/software/mark/downloads/> but is not open source.
Maintained by Jeff Laake. Last updated 3 years ago.
10.1 match 4.90 score 366 scripts 4 dependentsyoujin1207
logisticRR:Adjusted Relative Risk from Logistic Regression
Adjusted odds ratio conditional on potential confounders can be directly obtained from logistic regression. However, those adjusted odds ratios have been widely incorrectly interpreted as a relative risk. As relative risk is often of interest in public health, we provide a simple code to return adjusted relative risks from logistic regression model under potential confounders.
Maintained by Youjin Lee. Last updated 5 years ago.
logistic-regressionodds-ratiorelative-risk
14.2 match 3 stars 3.38 score 16 scriptsmpiktas
midasr:Mixed Data Sampling Regression
Methods and tools for mixed frequency time series data analysis. Allows estimation, model selection and forecasting for MIDAS regressions.
Maintained by Vaidotas Zemlys-Baleviฤius. Last updated 3 years ago.
8.3 match 77 stars 5.76 score 150 scriptshojsgaard
pbkrtest:Parametric Bootstrap, Kenward-Roger and Satterthwaite Based Methods for Test in Mixed Models
Computes p-values based on (a) Satterthwaite or Kenward-Rogers degree of freedom methods and (b) parametric bootstrap for mixed effects models as implemented in the 'lme4' package. Implements parametric bootstrap test for generalized linear mixed models as implemented in 'lme4' and generalized linear models. The package is documented in the paper by Halekoh and Hรธjsgaard, (2012, <doi:10.18637/jss.v059.i09>). Please see 'citation("pbkrtest")' for citation details.
Maintained by Sรธren Hรธjsgaard. Last updated 11 days ago.
3.3 match 5 stars 14.36 score 648 scripts 915 dependentsmjskay
ggblend:Blending and Compositing Algebra for 'ggplot2'
Algebra of operations for blending, copying, adjusting, and compositing layers in 'ggplot2'. Supports copying and adjusting the aesthetics or parameters of an existing layer, partitioning a layer into multiple pieces for re-composition, applying affine transformations to layers, and combining layers (or partitions of layers) using blend modes (including commutative blend modes, like multiply and darken). Blend mode support is particularly useful for creating plots with overlapping groups where the layer drawing order does not change the output; see Kindlmann and Scheidegger (2014) <doi:10.1109/TVCG.2014.2346325>.
Maintained by Matthew Kay. Last updated 2 years ago.
7.5 match 184 stars 6.29 score 71 scripts 1 dependentsdetlew
PowerTOST:Power and Sample Size for (Bio)Equivalence Studies
Contains functions to calculate power and sample size for various study designs used in bioequivalence studies. Use known.designs() to see the designs supported. Power and sample size can be obtained based on different methods, amongst them prominently the TOST procedure (two one-sided t-tests). See README and NEWS for further information.
Maintained by Detlew Labes. Last updated 12 months ago.
4.9 match 20 stars 9.61 score 112 scripts 4 dependentspik-piam
edgeTransport:Prepare EDGE Transport Data for the REMIND model
EDGE-T is a fork of the GCAM transport module https://jgcri.github.io/gcam-doc/energy.html#transportation with a high level of detail in its representation of technological and modal options. It is a partial equilibrium model with a nested multinomial logit structure and relies on the modified logit formulation. Most of the sources are not publicly available. PIK-internal users can find the sources in the distributed file system in the folder `/p/projects/rd3mod/inputdata/sources/EDGE-Transport-Standalone`.
Maintained by Johanna Hoppe. Last updated 3 days ago.
6.9 match 5 stars 6.84 score 16 scripts 2 dependentsziyili20
caROC:Continuous Biomarker Evaluation with Adjustment of Covariates
Compute covariate-adjusted specificity at controlled sensitivity level, or covariate-adjusted sensitivity at controlled specificity level, or covariate-adjust receiver operating characteristic curve, or covariate-adjusted thresholds at controlled sensitivity/specificity level. All statistics could also be computed for specific sub-populations given their covariate values. Methods are described in Ziyi Li, Yijian Huang, Datta Patil, Martin G. Sanda (2021+) "Covariate adjustment in continuous biomarker assessment".
Maintained by Ziyi Li. Last updated 4 years ago.
23.5 match 2.00 score 5 scriptsbioc
methylKit:DNA methylation analysis from high-throughput bisulfite sequencing results
methylKit is an R package for DNA methylation analysis and annotation from high-throughput bisulfite sequencing. The package is designed to deal with sequencing data from RRBS and its variants, but also target-capture methods and whole genome bisulfite sequencing. It also has functions to analyze base-pair resolution 5hmC data from experimental protocols such as oxBS-Seq and TAB-Seq. Methylation calling can be performed directly from Bismark aligned BAM files.
Maintained by Altuna Akalin. Last updated 17 days ago.
dnamethylationsequencingmethylseqgenome-biologymethylationstatistical-analysisvisualizationcurlbzip2xz-utilszlibcpp
4.0 match 220 stars 11.80 score 578 scripts 3 dependentsbioc
affy:Methods for Affymetrix Oligonucleotide Arrays
The package contains functions for exploratory oligonucleotide array analysis. The dependence on tkWidgets only concerns few convenience functions. 'affy' is fully functional without it.
Maintained by Robert D. Shear. Last updated 2 months ago.
microarrayonechannelpreprocessing
4.1 match 11.12 score 2.5k scripts 98 dependentsmatthieustigler
partsm:Periodic Autoregressive Time Series Models
Basic functions to fit and predict periodic autoregressive time series models. These models are discussed in the book P.H. Franses (1996) "Periodicity and Stochastic Trends in Economic Time Series", Oxford University Press. Data set analyzed in that book is also provided. NOTE: the package was orphaned during several years. It is now only maintained, but no major enhancements are expected, and the maintainer cannot provide any support.
Maintained by Matthieu Stigler. Last updated 4 years ago.
10.0 match 3 stars 4.57 score 25 scriptsbommert
stabm:Stability Measures for Feature Selection
An implementation of many measures for the assessment of the stability of feature selection. Both simple measures and measures which take into account the similarities between features are available, see Bommert (2020) <doi:10.17877/DE290R-21906>.
Maintained by Andrea Bommert. Last updated 2 years ago.
7.2 match 6 stars 6.25 score 33 scripts 3 dependentsbioc
edgeR:Empirical Analysis of Digital Gene Expression Data in R
Differential expression analysis of sequence count data. Implements a range of statistical methodology based on the negative binomial distributions, including empirical Bayes estimation, exact tests, generalized linear models, quasi-likelihood, and gene set enrichment. Can perform differential analyses of any type of omics data that produces read counts, including RNA-seq, ChIP-seq, ATAC-seq, Bisulfite-seq, SAGE, CAGE, metabolomics, or proteomics spectral counts. RNA-seq analyses can be conducted at the gene or isoform level, and tests can be conducted for differential exon or transcript usage.
Maintained by Yunshun Chen. Last updated 6 days ago.
alternativesplicingbatcheffectbayesianbiomedicalinformaticscellbiologychipseqclusteringcoveragedifferentialexpressiondifferentialmethylationdifferentialsplicingdnamethylationepigeneticsfunctionalgenomicsgeneexpressiongenesetenrichmentgeneticsimmunooncologymultiplecomparisonnormalizationpathwaysproteomicsqualitycontrolregressionrnaseqsagesequencingsinglecellsystemsbiologytimecoursetranscriptiontranscriptomicsopenblas
3.4 match 13.40 score 17k scripts 255 dependentsflr
FLCore:Core Package of FLR, Fisheries Modelling in R
Core classes and methods for FLR, a framework for fisheries modelling and management strategy simulation in R. Developed by a team of fisheries scientists in various countries. More information can be found at <http://flr-project.org/>.
Maintained by Iago Mosqueira. Last updated 10 days ago.
fisheriesflrfisheries-modelling
5.1 match 16 stars 8.78 score 956 scripts 23 dependentsopenpharma
mmrm:Mixed Models for Repeated Measures
Mixed models for repeated measures (MMRM) are a popular choice for analyzing longitudinal continuous outcomes in randomized clinical trials and beyond; see Cnaan, Laird and Slasor (1997) <doi:10.1002/(SICI)1097-0258(19971030)16:20%3C2349::AID-SIM667%3E3.0.CO;2-E> for a tutorial and Mallinckrodt, Lane, Schnell, Peng and Mancuso (2008) <doi:10.1177/009286150804200402> for a review. This package implements MMRM based on the marginal linear model without random effects using Template Model Builder ('TMB') which enables fast and robust model fitting. Users can specify a variety of covariance matrices, weight observations, fit models with restricted or standard maximum likelihood inference, perform hypothesis testing with Satterthwaite or Kenward-Roger adjustment, and extract least square means estimates by using 'emmeans'.
Maintained by Daniel Sabanes Bove. Last updated 10 days ago.
3.6 match 138 stars 12.15 score 113 scripts 4 dependentsargocanada
argoFloats:Analysis of Oceanographic Argo Floats
Supports the analysis of oceanographic data recorded by Argo autonomous drifting profiling floats. Functions are provided to (a) download and cache data files, (b) subset data in various ways, (c) handle quality-control flags and (d) plot the results according to oceanographic conventions. A shiny app is provided for easy exploration of datasets. The package is designed to work well with the 'oce' package, providing a wide range of processing capabilities that are particular to oceanographic analysis. See Kelley, Harbin, and Richards (2021) <doi:10.3389/fmars.2021.635922> for more on the scientific context and applications.
Maintained by Dan Kelley. Last updated 1 months ago.
6.0 match 17 stars 7.32 score 203 scriptsbioc
scMultiSim:Simulation of Multi-Modality Single Cell Data Guided By Gene Regulatory Networks and Cell-Cell Interactions
scMultiSim simulates paired single cell RNA-seq, single cell ATAC-seq and RNA velocity data, while incorporating mechanisms of gene regulatory networks, chromatin accessibility and cell-cell interactions. It allows users to tune various parameters controlling the amount of each biological factor, variation of gene-expression levels, the influence of chromatin accessibility on RNA sequence data, and so on. It can be used to benchmark various computational methods for single cell multi-omics data, and to assist in experimental design of wet-lab experiments.
Maintained by Hechen Li. Last updated 5 months ago.
singlecelltranscriptomicsgeneexpressionsequencingexperimentaldesign
6.1 match 23 stars 7.15 score 11 scriptsalexkowa
EnvStats:Package for Environmental Statistics, Including US EPA Guidance
Graphical and statistical analyses of environmental data, with focus on analyzing chemical concentrations and physical parameters, usually in the context of mandated environmental monitoring. Major environmental statistical methods found in the literature and regulatory guidance documents, with extensive help that explains what these methods do, how to use them, and where to find them in the literature. Numerous built-in data sets from regulatory guidance documents and environmental statistics literature. Includes scripts reproducing analyses presented in the book "EnvStats: An R Package for Environmental Statistics" (Millard, 2013, Springer, ISBN 978-1-4614-8455-4, <doi:10.1007/978-1-4614-8456-1>).
Maintained by Alexander Kowarik. Last updated 17 days ago.
3.3 match 26 stars 12.80 score 2.4k scripts 46 dependentsbfifield
hettx:Fisherian and Neymanian Methods for Detecting and Measuring Treatment Effect Variation
Implements methods developed by Ding, Feller, and Miratrix (2016) <doi:10.1111/rssb.12124> <arXiv:1412.5000>, and Ding, Feller, and Miratrix (2018) <doi:10.1080/01621459.2017.1407322> <arXiv:1605.06566> for testing whether there is unexplained variation in treatment effects across observations, and for characterizing the extent of the explained and unexplained variation in treatment effects. The package includes wrapper functions implementing the proposed methods, as well as helper functions for analyzing and visualizing the results of the test.
Maintained by Ben Fifield. Last updated 2 years ago.
8.0 match 10 stars 5.32 score 21 scriptsaqlt
rjdqa:Quality Assessment for Seasonal Adjustment
Add-in to the 'RJDemetra' package on seasonal adjustments. It allows to produce dashboards to summarise models and quickly check the quality of the seasonal adjustment.
Maintained by Alain Quartier-la-Tente. Last updated 4 months ago.
jdemetraquality-assessmentopenjdk
11.0 match 2 stars 3.85 score 8 scriptsepiverse-trace
cfr:Estimate Disease Severity and Case Ascertainment
Estimate the severity of a disease and ascertainment of cases, as discussed in Nishiura et al. (2009) <doi:10.1371/journal.pone.0006852>.
Maintained by Adam Kucharski. Last updated 17 days ago.
case-fatality-rateepidemic-modellingepidemiologyepiversehealth-outcomesoutbreak-analysissdg-3
5.2 match 13 stars 8.15 score 35 scriptsrobjhyndman
forecast:Forecasting Functions for Time Series and Linear Models
Methods and tools for displaying and analysing univariate time series forecasts including exponential smoothing via state space models and automatic ARIMA modelling.
Maintained by Rob Hyndman. Last updated 7 months ago.
forecastforecastingopenblascpp
2.3 match 1.1k stars 18.63 score 16k scripts 239 dependentsbioc
missMethyl:Analysing Illumina HumanMethylation BeadChip Data
Normalisation, testing for differential variability and differential methylation and gene set testing for data from Illumina's Infinium HumanMethylation arrays. The normalisation procedure is subset-quantile within-array normalisation (SWAN), which allows Infinium I and II type probes on a single array to be normalised together. The test for differential variability is based on an empirical Bayes version of Levene's test. Differential methylation testing is performed using RUV, which can adjust for systematic errors of unknown origin in high-dimensional data by using negative control probes. Gene ontology analysis is performed by taking into account the number of probes per gene on the array, as well as taking into account multi-gene associated probes.
Maintained by Belinda Phipson. Last updated 14 days ago.
normalizationdnamethylationmethylationarraygenomicvariationgeneticvariabilitydifferentialmethylationgenesetenrichment
5.8 match 7.24 score 300 scripts 1 dependentsstopsack
batchtma:Batch Effect Adjustments
Different adjustment methods for batch effects in biomarker data, such as from tissue microarrays. Some methods attempt to retain differences between batches that may be due to between-batch differences in "biological" factors that influence biomarker values.
Maintained by Konrad Stopsack. Last updated 9 months ago.
batch-effectsmeasurement-errortissue-microarray-analysis
11.2 match 1 stars 3.70 score 3 scriptsbioc
cytomapper:Visualization of highly multiplexed imaging data in R
Highly multiplexed imaging acquires the single-cell expression of selected proteins in a spatially-resolved fashion. These measurements can be visualised across multiple length-scales. First, pixel-level intensities represent the spatial distributions of feature expression with highest resolution. Second, after segmentation, expression values or cell-level metadata (e.g. cell-type information) can be visualised on segmented cell areas. This package contains functions for the visualisation of multiplexed read-outs and cell-level information obtained by multiplexed imaging technologies. The main functions of this package allow 1. the visualisation of pixel-level information across multiple channels, 2. the display of cell-level information (expression and/or metadata) on segmentation masks and 3. gating and visualisation of single cells.
Maintained by Lasse Meyer. Last updated 5 months ago.
immunooncologysoftwaresinglecellonechanneltwochannelmultiplecomparisonnormalizationdataimportbioimagingimaging-mass-cytometrysingle-cellspatial-analysis
4.3 match 32 stars 9.61 score 354 scripts 5 dependentsalexanderrobitzsch
sirt:Supplementary Item Response Theory Models
Supplementary functions for item response models aiming to complement existing R packages. The functionality includes among others multidimensional compensatory and noncompensatory IRT models (Reckase, 2009, <doi:10.1007/978-0-387-89976-3>), MCMC for hierarchical IRT models and testlet models (Fox, 2010, <doi:10.1007/978-1-4419-0742-4>), NOHARM (McDonald, 1982, <doi:10.1177/014662168200600402>), Rasch copula model (Braeken, 2011, <doi:10.1007/s11336-010-9190-4>; Schroeders, Robitzsch & Schipolowski, 2014, <doi:10.1111/jedm.12054>), faceted and hierarchical rater models (DeCarlo, Kim & Johnson, 2011, <doi:10.1111/j.1745-3984.2011.00143.x>), ordinal IRT model (ISOP; Scheiblechner, 1995, <doi:10.1007/BF02301417>), DETECT statistic (Stout, Habing, Douglas & Kim, 1996, <doi:10.1177/014662169602000403>), local structural equation modeling (LSEM; Hildebrandt, Luedtke, Robitzsch, Sommer & Wilhelm, 2016, <doi:10.1080/00273171.2016.1142856>).
Maintained by Alexander Robitzsch. Last updated 3 months ago.
item-response-theoryopenblascpp
4.0 match 23 stars 10.01 score 280 scripts 22 dependentsr-forge
multcomp:Simultaneous Inference in General Parametric Models
Simultaneous tests and confidence intervals for general linear hypotheses in parametric models, including linear, generalized linear, linear mixed effects, and survival models. The package includes demos reproducing analyzes presented in the book "Multiple Comparisons Using R" (Bretz, Hothorn, Westfall, 2010, CRC Press).
Maintained by Torsten Hothorn. Last updated 2 months ago.
3.0 match 13.49 score 7.5k scripts 366 dependentsaqlt
ggdemetra3:'ggplot2' Extension for Seasonal and Trading Day Adjustment with 'JDemetra+' 3.0
Provides 'ggplot2' functions to return the results of seasonal and trading day adjustment made by the R interface to 'JDemetra+' 3.0.
Maintained by Alain Quartier-la-Tente. Last updated 3 months ago.
9.3 match 4 stars 4.26 score 8 scripts 1 dependentsgrosssbm
missSBM:Handling Missing Data in Stochastic Block Models
When a network is partially observed (here, NAs in the adjacency matrix rather than 1 or 0 due to missing information between node pairs), it is possible to account for the underlying process that generates those NAs. 'missSBM', presented in 'Barbillon, Chiquet and Tabouy' (2022) <doi:10.18637/jss.v101.i12>, adjusts the popular stochastic block model from network data sampled under various missing data conditions, as described in 'Tabouy, Barbillon and Chiquet' (2019) <doi:10.1080/01621459.2018.1562934>.
Maintained by Julien Chiquet. Last updated 4 days ago.
missing-datanasnetwork-analysisnetwork-datasetstochastic-block-modelcpp
7.1 match 12 stars 5.53 score 19 scriptsx13org
x13binary:Provide the 'x13ashtml' Seasonal Adjustment Binary
The US Census Bureau provides a seasonal adjustment program now called 'X-13ARIMA-SEATS' building on both earlier programs called X-11 and X-12 as well as the SEATS program by the Bank of Spain. The US Census Bureau offers both source and binary versions -- which this package integrates for use by other R packages.
Maintained by Dirk Eddelbuettel. Last updated 8 months ago.
5.2 match 10 stars 7.50 score 16 scripts 10 dependentswincowgerdev
OpenSpecy:Analyze, Process, Identify, and Share Raman and (FT)IR Spectra
Raman and (FT)IR spectral analysis tool for plastic particles and other environmental samples (Cowger et al. 2021, <doi:10.1021/acs.analchem.1c00123>). With read_any(), Open Specy provides a single function for reading individual, batch, or map spectral data files like .asp, .csv, .jdx, .spc, .spa, .0, and .zip. process_spec() simplifies processing spectra, including smoothing, baseline correction, range restriction and flattening, intensity conversions, wavenumber alignment, and min-max normalization. Spectra can be identified in batch using an onboard reference library (Cowger et al. 2020, <doi:10.1177/0003702820929064>) using match_spec(). A Shiny app is available via run_app() or online at <https://openanalysis.org/openspecy/>.
Maintained by Win Cowger. Last updated 17 days ago.
5.1 match 29 stars 7.58 score 22 scriptsvegandevs
vegan:Community Ecology Package
Ordination methods, diversity analysis and other functions for community and vegetation ecologists.
Maintained by Jari Oksanen. Last updated 17 days ago.
ecological-modellingecologyordinationfortranopenblas
2.0 match 472 stars 19.41 score 15k scripts 440 dependentst-kalinowski
keras:R Interface to 'Keras'
Interface to 'Keras' <https://keras.io>, a high-level neural networks 'API'. 'Keras' was developed with a focus on enabling fast experimentation, supports both convolution based networks and recurrent networks (as well as combinations of the two), and runs seamlessly on both 'CPU' and 'GPU' devices.
Maintained by Tomasz Kalinowski. Last updated 11 months ago.
3.5 match 10.93 score 10k scripts 55 dependentsbioc
LPE:Methods for analyzing microarray data using Local Pooled Error (LPE) method
This LPE library is used to do significance analysis of microarray data with small number of replicates. It uses resampling based FDR adjustment, and gives less conservative results than traditional 'BH' or 'BY' procedures. Data accepted is raw data in txt format from MAS4, MAS5 or dChip. Data can also be supplied after normalization. LPE library is primarily used for analyzing data between two conditions. To use it for paired data, see LPEP library. For using LPE in multiple conditions, use HEM library.
Maintained by Nitin Jain. Last updated 5 months ago.
microarraydifferentialexpression
8.3 match 4.58 score 21 scripts 1 dependentsmonty-se
PINstimation:Estimation of the Probability of Informed Trading
A comprehensive bundle of utilities for the estimation of probability of informed trading models: original PIN in Easley and O'Hara (1992) and Easley et al. (1996); Multilayer PIN (MPIN) in Ersan (2016); Adjusted PIN (AdjPIN) in Duarte and Young (2009); and volume-synchronized PIN (VPIN) in Easley et al. (2011, 2012). Implementations of various estimation methods suggested in the literature are included. Additional compelling features comprise posterior probabilities, an implementation of an expectation-maximization (EM) algorithm, and PIN decomposition into layers, and into bad/good components. Versatile data simulation tools, and trade classification algorithms are among the supplementary utilities. The package provides fast, compact, and precise utilities to tackle the sophisticated, error-prone, and time-consuming estimation procedure of informed trading, and this solely using the raw trade-level data.
Maintained by Montasser Ghachem. Last updated 5 months ago.
clustering-analysisexpectation-maximisation-algorithmhierarchical-clusteringinformation-asymmetrymarket-microstructuremaximum-likelihood-estimationmixture-distributionspoisson-distribution
5.8 match 36 stars 6.48 score 14 scriptsfgazzelloni
hmsidwR:Health Metrics and the Spread of Infectious Diseases
A collection of datasets and supporting functions accompanying Health Metrics and the Spread of Infectious Diseases by Federica Gazzelloni (2024). This package provides data for health metrics calculations, including Disability-Adjusted Life Years (DALYs), Years of Life Lost (YLLs), and Years Lived with Disability (YLDs), as well as additional tools for analyzing and visualizing health data. Federica Gazzelloni (2024) <doi:10.5281/zenodo.10818338>.
Maintained by Federica Gazzelloni. Last updated 2 months ago.
deathshealth-datainfectious-diseaseslifeexpectancy
6.9 match 4 stars 5.48 score 6 scriptsbioc
DAPAR:Tools for the Differential Analysis of Proteins Abundance with R
The package DAPAR is a Bioconductor distributed R package which provides all the necessary functions to analyze quantitative data from label-free proteomics experiments. Contrarily to most other similar R packages, it is endowed with rich and user-friendly graphical interfaces, so that no programming skill is required (see `Prostar` package).
Maintained by Samuel Wieczorek. Last updated 5 months ago.
proteomicsnormalizationpreprocessingmassspectrometryqualitycontrolgodataimportprostar1
6.9 match 2 stars 5.42 score 22 scripts 1 dependentsbioc
dittoSeq:User Friendly Single-Cell and Bulk RNA Sequencing Visualization
A universal, user friendly, single-cell and bulk RNA sequencing visualization toolkit that allows highly customizable creation of color blindness friendly, publication-quality figures. dittoSeq accepts both SingleCellExperiment (SCE) and Seurat objects, as well as the import and usage, via conversion to an SCE, of SummarizedExperiment or DGEList bulk data. Visualizations include dimensionality reduction plots, heatmaps, scatterplots, percent composition or expression across groups, and more. Customizations range from size and title adjustments to automatic generation of annotations for heatmaps, overlay of trajectory analysis onto any dimensionality reduciton plot, hidden data overlay upon cursor hovering via ggplotly conversion, and many more. All with simple, discrete inputs. Color blindness friendliness is powered by legend adjustments (enlarged keys), and by allowing the use of shapes or letter-overlay in addition to the carefully selected dittoColors().
Maintained by Daniel Bunis. Last updated 5 months ago.
softwarevisualizationrnaseqsinglecellgeneexpressiontranscriptomicsdataimport
4.8 match 7.56 score 760 scripts 2 dependentsqlcal
qlcal:R Bindings to the Calendaring Functionality of 'QuantLib'
'QuantLib' bindings are provided for R using 'Rcpp' via an evolved version of the initial header-only 'Quantuccia' project offering an subset of 'QuantLib' (now maintained separately just for the calendaring subset). See the included file 'AUTHORS' for a full list of contributors to 'QuantLib' (and hence also 'Quantuccia').
Maintained by Dirk Eddelbuettel. Last updated 30 days ago.
7.3 match 7 stars 4.99 score 28 scriptsbeckerbenj
eatGADS:Data Management of Large Hierarchical Data
Import 'SPSS' data, handle and change 'SPSS' meta data, store and access large hierarchical data in 'SQLite' data bases.
Maintained by Benjamin Becker. Last updated 24 days ago.
4.9 match 1 stars 7.36 score 34 scripts 1 dependentsbristol-vaccine-centre
testerror:Uncertainty in Multiplex Panel Testing
Provides methods to support the estimation of epidemiological parameters based on the results of multiplex panel tests.
Maintained by Robert Challen. Last updated 12 months ago.
10.6 match 1 stars 3.40 score 4 scriptsleelabsg
SKAT:SNP-Set (Sequence) Kernel Association Test
Functions for kernel-regression-based association tests including Burden test, SKAT and SKAT-O. These methods aggregate individual SNP score statistics in a SNP set and efficiently compute SNP-set level p-values.
Maintained by Seunggeun (Shawn) Lee. Last updated 1 months ago.
3.7 match 45 stars 9.70 score 268 scripts 16 dependentsgavinsimpson
gratia:Graceful 'ggplot'-Based Graphics and Other Functions for GAMs Fitted Using 'mgcv'
Graceful 'ggplot'-based graphics and utility functions for working with generalized additive models (GAMs) fitted using the 'mgcv' package. Provides a reimplementation of the plot() method for GAMs that 'mgcv' provides, as well as 'tidyverse' compatible representations of estimated smooths.
Maintained by Gavin L. Simpson. Last updated 21 hours ago.
distributional-regressiongamgammgeneralized-additive-mixed-modelsgeneralized-additive-modelsggplot2glmlmmgcvpenalized-splinerandom-effectssmoothingsplines
2.8 match 217 stars 12.99 score 1.6k scripts 2 dependentskassambara
survminer:Drawing Survival Curves using 'ggplot2'
Contains the function 'ggsurvplot()' for drawing easily beautiful and 'ready-to-publish' survival curves with the 'number at risk' table and 'censoring count plot'. Other functions are also available to plot adjusted curves for `Cox` model and to visually examine 'Cox' model assumptions.
Maintained by Alboukadel Kassambara. Last updated 5 months ago.
2.2 match 524 stars 15.87 score 7.0k scripts 55 dependentsresplab
predtools:Prediction Model Tools
Provides additional functions for evaluating predictive models, including plotting calibration curves and model-based Receiver Operating Characteristic (mROC) based on Sadatsafavi et al (2021) <arXiv:2003.00316>.
Maintained by Amin Adibi. Last updated 2 years ago.
5.3 match 9 stars 6.74 score 77 scriptsocbe-uio
contingencytables:Statistical Analysis of Contingency Tables
Provides functions to perform statistical inference of data organized in contingency tables. This package is a companion to the "Statistical Analysis of Contingency Tables" book by Fagerland et al. <ISBN 9781466588172>.
Maintained by Waldir Leoncio. Last updated 7 months ago.
8.5 match 3 stars 4.13 score 8 scripts 1 dependentscnuge
debar:A Post-Clustering Denoiser for COI-5P Barcode Data
The 'debar' sequence processing pipeline is designed for denoising high throughput sequencing data for the animal DNA barcode marker cytochrome c oxidase I (COI). The package is designed to detect and correct insertion and deletion errors within sequencer outputs. This is accomplished through comparison of input sequences against a profile hidden Markov model (PHMM) using the Viterbi algorithm (for algorithm details see Durbin et al. 1998, ISBN: 9780521629713). Inserted base pairs are removed and deleted base pairs are accounted for through the introduction of a placeholder character. Since the PHMM is a probabilistic representation of the COI barcode, corrections are not always perfect. For this reason 'debar' censors base pairs adjacent to reported indel sites, turning them into placeholder characters (default is 7 base pairs in either direction, this feature can be disabled). Testing has shown that this censorship results in the correct sequence length being restored, and erroneous base pairs being masked the vast majority of the time (>95%).
Maintained by Cameron M. Nugent. Last updated 1 years ago.
bioinformaticsdenoisingdna-barcodingdna-sequencinghidden-markov-modelmachine-learning
8.8 match 1 stars 4.00 score 8 scriptsmerck
psm3mkv:Evaluate Partitioned Survival and State Transition Models
Fits and evaluates three-state partitioned survival analyses (PartSAs) and Markov models (clock forward or clock reset) to progression and overall survival data typically collected in oncology clinical trials. These model structures are typically considered in cost-effectiveness modeling in advanced/metastatic cancer indications. Muston (2024). "Informing structural assumptions for three state oncology cost-effectiveness models through model efficiency and fit". Applied Health Economics and Health Policy.
Maintained by Dominic Muston. Last updated 9 months ago.
5.5 match 10 stars 6.43 score 1 scriptsmages
ChainLadder:Statistical Methods and Models for Claims Reserving in General Insurance
Various statistical methods and models which are typically used for the estimation of outstanding claims reserves in general insurance, including those to estimate the claims development result as required under Solvency II.
Maintained by Markus Gesmann. Last updated 1 months ago.
3.5 match 82 stars 10.04 score 196 scripts 2 dependentspeterbiber
viscomplexr:Phase Portraits of Functions in the Complex Number Plane
Functionality for creating phase portraits of functions in the complex number plane. Works with R base graphics, whose full functionality is available. Parallel processing is used for optimum performance.
Maintained by Peter Biber. Last updated 4 months ago.
7.3 match 4 stars 4.75 score 14 scriptscwolock
survML:Tools for Flexible Survival Analysis Using Machine Learning
Statistical tools for analyzing time-to-event data using machine learning. Implements survival stacking for conditional survival estimation, standardized survival function estimation for current status data, and methods for algorithm-agnostic variable importance. See Wolock CJ, Gilbert PB, Simon N, and Carone M (2024) <doi:10.1080/10618600.2024.2304070>.
Maintained by Charles Wolock. Last updated 2 months ago.
4.3 match 16 stars 8.06 score 73 scripts 1 dependentsrstudio
gt:Easily Create Presentation-Ready Display Tables
Build display tables from tabular data with an easy-to-use set of functions. With its progressive approach, we can construct display tables with a cohesive set of table parts. Table values can be formatted using any of the included formatting functions. Footnotes and cell styles can be precisely added through a location targeting system. The way in which 'gt' handles things for you means that you don't often have to worry about the fine details.
Maintained by Richard Iannone. Last updated 12 days ago.
docxeasy-to-usehtmllatexrtfsummary-tables
1.9 match 2.1k stars 18.36 score 20k scripts 112 dependentspoissonconsulting
dttr2:Manipulate Date, POSIXct and hms Vectors
Manipulates date ('Date'), date time ('POSIXct') and time ('hms') vectors. Date/times are considered discrete and are floored whenever encountered. Times are wrapped and time zones are maintained unless explicitly altered by the user.
Maintained by Ayla Pearson. Last updated 2 months ago.
6.0 match 10 stars 5.65 score 5 scripts 6 dependentscran
VAM:Variance-Adjusted Mahalanobis
Contains logic for cell-specific gene set scoring of single cell RNA sequencing data.
Maintained by H. Robert Frost. Last updated 1 years ago.
7.1 match 4.78 score 4 dependentsbluefoxr
COINr:Composite Indicator Construction and Analysis
A comprehensive high-level package, for composite indicator construction and analysis. It is a "development environment" for composite indicators and scoreboards, which includes utilities for construction (indicator selection, denomination, imputation, data treatment, normalisation, weighting and aggregation) and analysis (multivariate analysis, correlation plotting, short cuts for principal component analysis, global sensitivity analysis, and more). A composite indicator is completely encapsulated inside a single hierarchical list called a "coin". This allows a fast and efficient work flow, as well as making quick copies, testing methodological variations and making comparisons. It also includes many plotting options, both statistical (scatter plots, distribution plots) as well as for presenting results.
Maintained by William Becker. Last updated 2 months ago.
3.8 match 26 stars 9.07 score 73 scripts 1 dependentseddelbuettel
RcppQuantuccia:R Bindings to the Calendaring Functionality of 'QuantLib'
'QuantLib' bindings are provided for R using 'Rcpp' via an updated variant of the header-only 'Quantuccia' project (put together initially by Peter Caspers) offering an essential subset of 'QuantLib' (and now maintained separately for the calendaring subset). See the included file 'AUTHORS' for a full list of contributors to both 'QuantLib' and 'Quantuccia'.
Maintained by Dirk Eddelbuettel. Last updated 4 months ago.
7.3 match 12 stars 4.62 score 23 scriptsleifeld
btergm:Temporal Exponential Random Graph Models by Bootstrapped Pseudolikelihood
Temporal Exponential Random Graph Models (TERGM) estimated by maximum pseudolikelihood with bootstrapped confidence intervals or Markov Chain Monte Carlo maximum likelihood. Goodness of fit assessment for ERGMs, TERGMs, and SAOMs. Micro-level interpretation of ERGMs and TERGMs. The methods are described in Leifeld, Cranmer and Desmarais (2018), JStatSoft <doi:10.18637/jss.v083.i06>.
Maintained by Philip Leifeld. Last updated 12 months ago.
complex-networksdynamic-analysisergmestimationgoodness-of-fitinferencelongitudinal-datanetwork-analysispredictiontergm
5.0 match 17 stars 6.70 score 83 scripts 2 dependentscarloscinelli
sensemakr:Sensitivity Analysis Tools for Regression Models
Implements a suite of sensitivity analysis tools that extends the traditional omitted variable bias framework and makes it easier to understand the impact of omitted variables in regression models, as discussed in Cinelli, C. and Hazlett, C. (2020), "Making Sense of Sensitivity: Extending Omitted Variable Bias." Journal of the Royal Statistical Society, Series B (Statistical Methodology) <doi:10.1111/rssb.12348>.
Maintained by Carlos Cinelli. Last updated 4 months ago.
3.5 match 92 stars 9.43 score 139 scripts 2 dependentsdhaine
episensr:Basic Sensitivity Analysis of Epidemiological Results
Basic sensitivity analysis of the observed relative risks adjusting for unmeasured confounding and misclassification of the exposure/outcome, or both. It follows the bias analysis methods and examples from the book by Lash T.L, Fox M.P, and Fink A.K. "Applying Quantitative Bias Analysis to Epidemiologic Data", ('Springer', 2021).
Maintained by Denis Haine. Last updated 1 years ago.
biasepidemiologysensitivity-analysisstatistics
5.1 match 13 stars 6.48 score 39 scripts 1 dependentsbioc
ggtreeExtra:An R Package To Add Geometric Layers On Circular Or Other Layout Tree Of "ggtree"
'ggtreeExtra' extends the method for mapping and visualizing associated data on phylogenetic tree using 'ggtree'. These associated data can be presented on the external panels to circular layout, fan layout, or other rectangular layout tree built by 'ggtree' with the grammar of 'ggplot2'.
Maintained by Shuangbin Xu. Last updated 5 months ago.
softwarevisualizationphylogeneticsannotation
3.4 match 90 stars 9.72 score 426 scripts 3 dependentsopenpharma
DoseFinding:Planning and Analyzing Dose Finding Experiments
The DoseFinding package provides functions for the design and analysis of dose-finding experiments (with focus on pharmaceutical Phase II clinical trials). It provides functions for: multiple contrast tests, fitting non-linear dose-response models (using Bayesian and non-Bayesian estimation), calculating optimal designs and an implementation of the MCPMod methodology (Pinheiro et al. (2014) <doi:10.1002/sim.6052>).
Maintained by Marius Thomas. Last updated 5 days ago.
3.2 match 8 stars 10.32 score 98 scripts 10 dependentsmatloff
qeML:Quick and Easy Machine Learning Tools
The letters 'qe' in the package title stand for "quick and easy," alluding to the convenience goal of the package. We bring together a variety of machine learning (ML) tools from standard R packages, providing wrappers with a simple, convenient, and uniform interface.
Maintained by Norm Matloff. Last updated 26 days ago.
3.9 match 41 stars 8.41 score 48 scripts 1 dependentsmarcelschweiker
comf:Models and Equations for Human Comfort Research
Calculation of various common and less common comfort indices such as predicted mean vote or the two node model. Converts physical variables such as relative to absolute humidity and evaluates the performance of comfort indices.
Maintained by Marcel Schweiker. Last updated 3 months ago.
6.8 match 3 stars 4.78 score 40 scriptsdavidgohel
flextable:Functions for Tabular Reporting
Use a grammar for creating and customizing pretty tables. The following formats are supported: 'HTML', 'PDF', 'RTF', 'Microsoft Word', 'Microsoft PowerPoint' and R 'Grid Graphics'. 'R Markdown', 'Quarto' and the package 'officer' can be used to produce the result files. The syntax is the same for the user regardless of the type of output to be produced. A set of functions allows the creation, definition of cell arrangement, addition of headers or footers, formatting and definition of cell content with text and or images. The package also offers a set of high-level functions that allow tabular reporting of statistical models and the creation of complex cross tabulations.
Maintained by David Gohel. Last updated 1 months ago.
docxhtml5ms-office-documentsrmarkdowntable
1.9 match 583 stars 17.04 score 7.3k scripts 119 dependentsrjdverse
rjd3x13:Seasonal Adjustment with X-13 in 'JDemetra+ 3.x'
R Interface to 'JDemetra+ 3.x' (<https://github.com/jdemetra>) time series analysis software. It offers full acces to options and outputs of X-13, including RegARIMA modelling (automatic ARIMA model with outlier detection and trading days adjustment) and X-11 decomposition.
Maintained by Tanguy Barthelemy. Last updated 5 months ago.
7.0 match 5 stars 4.53 score 8 scripts 3 dependentsgforge
Greg:Regression Helper Functions
Methods for manipulating regression models and for describing these in a style adapted for medical journals. Contains functions for generating an HTML table with crude and adjusted estimates, plotting hazard ratio, plotting model estimates and confidence intervals using forest plots, extending this to comparing multiple models in a single forest plots. In addition to the descriptive methods, there are functions for the robust covariance matrix provided by the 'sandwich' package, a function for adding non-linearities to a model, and a wrapper around the 'Epi' package's Lexis() functions for time-splitting a dataset when modeling non-proportional hazards in Cox regressions.
Maintained by Max Gordon. Last updated 1 years ago.
5.1 match 6 stars 6.26 score 68 scriptsddsjoberg
gtsummary:Presentation-Ready Data Summary and Analytic Result Tables
Creates presentation-ready tables summarizing data sets, regression models, and more. The code to create the tables is concise and highly customizable. Data frames can be summarized with any function, e.g. mean(), median(), even user-written functions. Regression models are summarized and include the reference rows for categorical variables. Common regression models, such as logistic regression and Cox proportional hazards regression, are automatically identified and the tables are pre-filled with appropriate column headers.
Maintained by Daniel D. Sjoberg. Last updated 3 days ago.
easy-to-usegthtml5regression-modelsreproducibilityreproducible-researchstatisticssummary-statisticssummary-tablestable1tableone
1.9 match 1.1k stars 17.00 score 8.2k scripts 15 dependentstrackage
trip:Tracking Data
Access and manipulate spatial tracking data, with straightforward coercion from and to other formats. Filter for speed and create time spent maps from tracking data. There are coercion methods to convert between 'trip' and 'ltraj' from 'adehabitatLT', and between 'trip' and 'psp' and 'ppp' from 'spatstat'. Trip objects can be created from raw or grouped data frames, and from types in the 'sp', sf', 'amt', 'trackeR', 'mousetrap', and other packages, Sumner, MD (2011) <https://figshare.utas.edu.au/articles/thesis/The_tag_location_problem/23209538>.
Maintained by Michael D. Sumner. Last updated 8 months ago.
4.1 match 13 stars 7.72 score 137 scripts 1 dependentskolesarm
dfadjust:Degrees of Freedom Adjustment for Robust Standard Errors
Computes small-sample degrees of freedom adjustment for heteroskedasticity robust standard errors, and for clustered standard errors in linear regression. See Imbens and Kolesรกr (2016) <doi:10.1162/REST_a_00552> for a discussion of these adjustments.
Maintained by Michal Kolesรกr. Last updated 3 months ago.
5.5 match 31 stars 5.75 score 12 scriptsrjdverse
rjd3tramoseats:Seasonal Adjustment with TRAMO-SEATS in 'JDemetra+ 3.x'
R Interface to 'JDemetra+ 3.x' (<https://github.com/jdemetra>) time series analysis software. It offers full acces to options and outputs of TRAMO-SEATS (Time series Regression with ARIMA noise, Missing values and Outliers - Signal Extraction in ARIMA Time Series), including TRAMO modelling (automatic ARIMA model with outlier detection and trading days adjustment).
Maintained by Tanguy Barthelemy. Last updated 5 months ago.
7.0 match 5 stars 4.51 score 12 scripts 3 dependentsbioc
tidybulk:Brings transcriptomics to the tidyverse
This is a collection of utility functions that allow to perform exploration of and calculations to RNA sequencing data, in a modular, pipe-friendly and tidy fashion.
Maintained by Stefano Mangiola. Last updated 5 months ago.
assaydomaininfrastructurernaseqdifferentialexpressiongeneexpressionnormalizationclusteringqualitycontrolsequencingtranscriptiontranscriptomicsbioconductorbulk-transcriptional-analysesdeseq2differential-expressionedgerensembl-idsentrezgene-symbolsgseamds-dimensionspcapiperedundancytibbletidytidy-datatidyversetranscriptstsne
3.3 match 168 stars 9.48 score 172 scripts 1 dependentsjokergoo
circlize:Circular Visualization
Circular layout is an efficient way for the visualization of huge amounts of information. Here this package provides an implementation of circular layout generation in R as well as an enhancement of available software. The flexibility of the package is based on the usage of low-level graphics functions such that self-defined high-level graphics can be easily implemented by users for specific purposes. Together with the seamless connection between the powerful computational and visual environment in R, it gives users more convenience and freedom to design figures for better understanding complex patterns behind multiple dimensional data. The package is described in Gu et al. 2014 <doi:10.1093/bioinformatics/btu393>.
Maintained by Zuguang Gu. Last updated 1 years ago.
2.0 match 983 stars 15.62 score 10k scripts 213 dependentsnumbats
cassowaryr:Compute Scagnostics on Pairs of Numeric Variables in a Data Set
Computes a range of scatterplot diagnostics (scagnostics) on pairs of numerical variables in a data set. A range of scagnostics, including graph and association-based scagnostics described by Leland Wilkinson and Graham Wills (2008) <doi:10.1198/106186008X320465> and association-based scagnostics described by Katrin Grimm (2016,ISBN:978-3-8439-3092-5) can be computed. Summary and plotting functions are provided.
Maintained by Harriet Mason. Last updated 12 days ago.
data-sciencedata-visualizationedahigh-dimensional-datamultivariate
5.2 match 3 stars 6.02 score 26 scripts 1 dependentscamhowitt
shinyLottie:Seamlessly Integrate 'Lottie' Animations into 'shiny' Applications
Easily integrate and control 'Lottie' animations within 'shiny' applications', without the need for idiosyncratic expression or use of 'JavaScript'. This includes utilities for generating animation instances, controlling playback, manipulating animation properties, and more. For more information on 'Lottie', see: <https://airbnb.io/lottie/#/>. Additionally, see the official 'Lottie' GitHub repository at <https://github.com/airbnb/lottie>.
Maintained by Cameron Howitt. Last updated 9 months ago.
5.6 match 2 stars 5.52 score 37 scriptsalanarnholt
BSDA:Basic Statistics and Data Analysis
Data sets for book "Basic Statistics and Data Analysis" by Larry J. Kitchens.
Maintained by Alan T. Arnholt. Last updated 2 years ago.
3.4 match 7 stars 9.11 score 1.3k scripts 6 dependentsfeiyoung
ProFAST:Probabilistic Factor Analysis for Spatially-Aware Dimension Reduction
Probabilistic factor analysis for spatially-aware dimension reduction across multi-section spatial transcriptomics data with millions of spatial locations. More details can be referred to Wei Liu, et al. (2023) <doi:10.1101/2023.07.11.548486>.
Maintained by Wei Liu. Last updated 1 months ago.
5.3 match 2 stars 5.86 score 12 scripts 1 dependentsandymckenzie
BRETIGEA:Brain Cell Type Specific Gene Expression Analysis
Analysis of relative cell type proportions in bulk gene expression data. Provides a well-validated set of brain cell type-specific marker genes derived from multiple types of experiments, as described in McKenzie (2018) <doi:10.1038/s41598-018-27293-5>. For brain tissue data sets, there are marker genes available for astrocytes, endothelial cells, microglia, neurons, oligodendrocytes, and oligodendrocyte precursor cells, derived from each of human, mice, and combination human/mouse data sets. However, if you have access to your own marker genes, the functions can be applied to bulk gene expression data from any tissue. Also implements multiple options for relative cell type proportion estimation using these marker genes, adapting and expanding on approaches from the 'CellCODE' R package described in Chikina (2015) <doi:10.1093/bioinformatics/btv015>. The number of cell type marker genes used in a given analysis can be increased or decreased based on your preferences and the data set. Finally, provides functions to use the estimates to adjust for variability in the relative proportion of cell types across samples prior to downstream analyses.
Maintained by Andrew McKenzie. Last updated 1 years ago.
cell-typegene-expressiongene-expression-signatures
4.9 match 15 stars 6.20 score 30 scriptsbioc
cola:A Framework for Consensus Partitioning
Subgroup classification is a basic task in genomic data analysis, especially for gene expression and DNA methylation data analysis. It can also be used to test the agreement to known clinical annotations, or to test whether there exist significant batch effects. The cola package provides a general framework for subgroup classification by consensus partitioning. It has the following features: 1. It modularizes the consensus partitioning processes that various methods can be easily integrated. 2. It provides rich visualizations for interpreting the results. 3. It allows running multiple methods at the same time and provides functionalities to straightforward compare results. 4. It provides a new method to extract features which are more efficient to separate subgroups. 5. It automatically generates detailed reports for the complete analysis. 6. It allows applying consensus partitioning in a hierarchical manner.
Maintained by Zuguang Gu. Last updated 1 months ago.
clusteringgeneexpressionclassificationsoftwareconsensus-clusteringcpp
4.0 match 61 stars 7.49 score 112 scriptspecanproject
PEcAn.dvmdostem:PEcAn Package for Integration of the Dvmdostem Model
This module provides functions to link the dvmdostem model to PEcAn.
Maintained by Tobey Carman. Last updated 3 days ago.
bayesiancyberinfrastructuredata-assimilationdata-scienceecosystem-modelecosystem-scienceforecastingmeta-analysisnational-science-foundationpecanplants
4.0 match 216 stars 7.56 score 3 scriptsbayesball
ProbBayes:Probability and Bayesian Modeling
Functions and datasets to accompany J. Albert and J. Hu, "Probability and Bayesian Modeling", CRC Press, (2019, ISBN: 1138492566).
Maintained by Jim Albert. Last updated 4 years ago.
7.0 match 5 stars 4.30 score 80 scriptsagi-lab
SynthETIC:Synthetic Experience Tracking Insurance Claims
Creation of an individual claims simulator which generates various features of non-life insurance claims. An initial set of test parameters, designed to mirror the experience of an Auto Liability portfolio, were set up and applied by default to generate a realistic test data set of individual claims (see vignette). The simulated data set then allows practitioners to back-test the validity of various reserving models and to prove and/or disprove certain actuarial assumptions made in claims modelling. The distributional assumptions used to generate this data set can be easily modified by users to match their experiences. Reference: Avanzi B, Taylor G, Wang M, Wong B (2020) "SynthETIC: an individual insurance claim simulator with feature control" <arXiv:2008.05693>.
Maintained by Melantha Wang. Last updated 1 years ago.
4.8 match 12 stars 6.22 score 23 scripts 2 dependentsnutterb
pixiedust:Tables so Beautifully Fine-Tuned You Will Believe It's Magic
The introduction of the 'broom' package has made converting model objects into data frames as simple as a single function. While the 'broom' package focuses on providing tidy data frames that can be used in advanced analysis, it deliberately stops short of providing functionality for reporting models in publication-ready tables. 'pixiedust' provides this functionality with a programming interface intended to be similar to 'ggplot2's system of layers with fine tuned control over each cell of the table. Options for output include printing to the console and to the common markdown formats (markdown, HTML, and LaTeX). With a little 'pixiedust' (and happy thoughts) tables can really fly.
Maintained by Benjamin Nutter. Last updated 1 years ago.
3.8 match 180 stars 8.01 score 94 scriptskassambara
ggpubr:'ggplot2' Based Publication Ready Plots
The 'ggplot2' package is excellent and flexible for elegant data visualization in R. However the default generated plots requires some formatting before we can send them for publication. Furthermore, to customize a 'ggplot', the syntax is opaque and this raises the level of difficulty for researchers with no advanced R programming skills. 'ggpubr' provides some easy-to-use functions for creating and customizing 'ggplot2'- based publication ready plots.
Maintained by Alboukadel Kassambara. Last updated 2 years ago.
1.8 match 1.2k stars 16.68 score 65k scripts 409 dependentsbioc
Repitools:Epigenomic tools
Tools for the analysis of enrichment-based epigenomic data. Features include summarization and visualization of epigenomic data across promoters according to gene expression context, finding regions of differential methylation/binding, BayMeth for quantifying methylation etc.
Maintained by Mark Robinson. Last updated 5 months ago.
dnamethylationgeneexpressionmethylseq
5.1 match 5.90 score 267 scriptsdevopifex
g2r:Interactive Grammar of Graphics
Interactive grammar of graphics.
Maintained by John Coene. Last updated 3 years ago.
6.6 match 119 stars 4.53 score 57 scriptsolink-proteomics
OlinkAnalyze:Facilitate Analysis of Proteomic Data from Olink
A collection of functions to facilitate analysis of proteomic data from Olink, primarily NPX data that has been exported from Olink Software. The functions also work on QUANT data from Olink by log- transforming the QUANT data. The functions are focused on reading data, facilitating data wrangling and quality control analysis, performing statistical analysis and generating figures to visualize the results of the statistical analysis. The goal of this package is to help users extract biological insights from proteomic data run on the Olink platform.
Maintained by Kathleen Nevola. Last updated 21 days ago.
olinkproteomicsproteomics-data-analysis
3.1 match 104 stars 9.72 score 61 scriptsmlr-org
mlr3filters:Filter Based Feature Selection for 'mlr3'
Extends 'mlr3' with filter methods for feature selection. Besides standalone filter methods built-in methods of any machine-learning algorithm are supported. Partial scoring of multivariate filter methods is supported.
Maintained by Marc Becker. Last updated 4 months ago.
feature-selectionfilterfiltersmlrmlr3variable-importance
3.5 match 20 stars 8.37 score 95 scripts 3 dependentsharrelfe
Hmisc:Harrell Miscellaneous
Contains many functions useful for data analysis, high-level graphics, utility operations, functions for computing sample size and power, simulation, importing and annotating datasets, imputing missing values, advanced table making, variable clustering, character string manipulation, conversion of R objects to LaTeX and html code, recoding variables, caching, simplified parallel computing, encrypting and decrypting data using a safe workflow, general moving window statistical estimation, and assistance in interpreting principal component analysis.
Maintained by Frank E Harrell Jr. Last updated 17 hours ago.
1.7 match 210 stars 17.61 score 17k scripts 750 dependentsjeksterslab
betaSandwich:Robust Confidence Intervals for Standardized Regression Coefficients
Generates robust confidence intervals for standardized regression coefficients using heteroskedasticity-consistent standard errors for models fitted by lm() as described in Dudgeon (2017) <doi:10.1007/s11336-017-9563-z>. The package can also be used to generate confidence intervals for R-squared, adjusted R-squared, and differences of standardized regression coefficients. A description of the package and code examples are presented in Pesigan, Sun, and Cheung (2023) <doi:10.1080/00273171.2023.2201277>.
Maintained by Ivan Jacob Agaloos Pesigan. Last updated 2 months ago.
confidence-intervalsheteroskedasticity-consistent-standard-errorsstandardized-regression-coefficients
7.1 match 4.16 score 16 scriptshneth
unikn:Graphical Elements of the University of Konstanz's Corporate Design
Define and use graphical elements of corporate design manuals in R. The 'unikn' package provides color functions (by defining dedicated colors and color palettes, and commands for finding, changing, viewing, and using them) and styled text elements (e.g., for marking, underlining, or plotting colored titles). The pre-defined range of colors and text decoration functions is based on the corporate design of the University of Konstanz <https://www.uni-konstanz.de/>, but can be adapted and extended for other purposes or institutions.
Maintained by Hansjoerg Neth. Last updated 3 months ago.
brandingcolorcolor-palettecolorschemecorporate-designpalettetext-decorationuniversity-colorsvisual-identity
3.3 match 39 stars 8.82 score 156 scripts 2 dependentslau-mel
swamp:Visualization, Analysis and Adjustment of High-Dimensional Data in Respect to Sample Annotations
Collection of functions to connect the structure of the data with the information on the samples. Three types of associations are covered: 1. linear model of principal components. 2. hierarchical clustering analysis. 3. distribution of features-sample annotation associations. Additionally, the inter-relation between sample annotations can be analyzed. Simple methods are provided for the correction of batch effects and removal of principal components.
Maintained by Martin Lauss. Last updated 5 years ago.
12.1 match 2.42 score 29 scripts 1 dependentsohdsi
EmpiricalCalibration:Routines for Performing Empirical Calibration of Observational Study Estimates
Routines for performing empirical calibration of observational study estimates. By using a set of negative control hypotheses we can estimate the empirical null distribution of a particular observational study setup. This empirical null distribution can be used to compute a calibrated p-value, which reflects the probability of observing an estimated effect size when the null hypothesis is true taking both random and systematic error into account. A similar approach can be used to calibrate confidence intervals, using both negative and positive controls. For more details, see Schuemie et al. (2013) <doi:10.1002/sim.5925> and Schuemie et al. (2018) <doi:10.1073/pnas.1708282114>.
Maintained by Martijn Schuemie. Last updated 1 months ago.
3.4 match 10 stars 8.51 score 151 scripts 1 dependentscran
svgtools:Manipulate SVG (Template) Files of Charts
The purpose of this package is to manipulate SVG files that are templates of charts the user wants to produce. In vector graphics one copes with x-/y-coordinates of elements (e.g. lines, rectangles, text). Their scale is often dependent on the program that is used to produce the graphics. In applied statistics one usually has numeric values on a fixed scale (e.g. percentage values between 0 and 100) to show in a chart. Basically, 'svgtools' transforms the statistical values into coordinates and widths/heights of the vector graphics. This is done by stackedBar() for bar charts, by linesSymbols() for charts with lines and/or symbols (dot markers) and scatterSymbols() for scatterplots.
Maintained by Christian Wimmer. Last updated 9 months ago.
14.5 match 2.00 score