Showing 200 of total 7975 results (show query)

topepo

caret:Classification and Regression Training

Misc functions for training and plotting classification and regression models.

Maintained by Max Kuhn. Last updated 4 months ago.

1.6k stars 19.24 score 61k scripts 303 dependents

davidgohel

ggiraph:Make 'ggplot2' Graphics Interactive

Create interactive 'ggplot2' graphics using 'htmlwidgets'.

Maintained by David Gohel. Last updated 3 days ago.

libpngcpp

822 stars 14.37 score 4.1k scripts 35 dependents

raivokolde

pheatmap:Pretty Heatmaps

Implementation of heatmaps that offers more control over dimensions and appearance.

Maintained by Raivo Kolde. Last updated 6 years ago.

246 stars 14.36 score 22k scripts 231 dependents

eliocamp

ggnewscale:Multiple Fill and Colour Scales in 'ggplot2'

Use multiple fill and colour scales in 'ggplot2'.

Maintained by Elio Campitelli. Last updated 1 months ago.

ggplot2

414 stars 14.18 score 4.9k scripts 136 dependents

bioc

mixOmics:Omics Data Integration Project

Multivariate methods are well suited to large omics data sets where the number of variables (e.g. genes, proteins, metabolites) is much larger than the number of samples (patients, cells, mice). They have the appealing properties of reducing the dimension of the data by using instrumental variables (components), which are defined as combinations of all variables. Those components are then used to produce useful graphical outputs that enable better understanding of the relationships and correlation structures between the different data sets that are integrated. mixOmics offers a wide range of multivariate methods for the exploration and integration of biological datasets with a particular focus on variable selection. The package proposes several sparse multivariate models we have developed to identify the key variables that are highly correlated, and/or explain the biological outcome of interest. The data that can be analysed with mixOmics may come from high throughput sequencing technologies, such as omics data (transcriptomics, metabolomics, proteomics, metagenomics etc) but also beyond the realm of omics (e.g. spectral imaging). The methods implemented in mixOmics can also handle missing values without having to delete entire rows with missing data. A non exhaustive list of methods include variants of generalised Canonical Correlation Analysis, sparse Partial Least Squares and sparse Discriminant Analysis. Recently we implemented integrative methods to combine multiple data sets: N-integration with variants of Generalised Canonical Correlation Analysis and P-integration with variants of multi-group Partial Least Squares.

Maintained by Eva Hamrud. Last updated 4 days ago.

immunooncologymicroarraysequencingmetabolomicsmetagenomicsproteomicsgenepredictionmultiplecomparisonclassificationregressionbioconductorgenomicsgenomics-datagenomics-visualizationmultivariate-analysismultivariate-statisticsomicsr-pkgr-project

185 stars 13.75 score 1.3k scripts 22 dependents

yulab-smu

scatterpie:Scatter Pie Plot

Creates scatterpie plots, especially useful for plotting pies on a map.

Maintained by Guangchuang Yu. Last updated 3 months ago.

62 stars 13.60 score 820 scripts 68 dependents

wilkox

treemapify:Draw Treemaps in 'ggplot2'

Provides 'ggplot2' geoms for drawing treemaps.

Maintained by David Wilkins. Last updated 10 months ago.

data-visualisationggplot2treemap

215 stars 12.58 score 1.6k scripts 9 dependents

guido-s

netmeta:Network Meta-Analysis using Frequentist Methods

A comprehensive set of functions providing frequentist methods for network meta-analysis (Balduzzi et al., 2023) <doi:10.18637/jss.v106.i02> and supporting Schwarzer et al. (2015) <doi:10.1007/978-3-319-21416-0>, Chapter 8 "Network Meta-Analysis": - frequentist network meta-analysis following Rücker (2012) <doi:10.1002/jrsm.1058>; - additive network meta-analysis for combinations of treatments (Rücker et al., 2020) <doi:10.1002/bimj.201800167>; - network meta-analysis of binary data using the Mantel-Haenszel or non-central hypergeometric distribution method (Efthimiou et al., 2019) <doi:10.1002/sim.8158>, or penalised logistic regression (Evrenoglou et al., 2022) <doi:10.1002/sim.9562>; - rankograms and ranking of treatments by the Surface under the cumulative ranking curve (SUCRA) (Salanti et al., 2013) <doi:10.1016/j.jclinepi.2010.03.016>; - ranking of treatments using P-scores (frequentist analogue of SUCRAs without resampling) according to Rücker & Schwarzer (2015) <doi:10.1186/s12874-015-0060-8>; - split direct and indirect evidence to check consistency (Dias et al., 2010) <doi:10.1002/sim.3767>, (Efthimiou et al., 2019) <doi:10.1002/sim.8158>; - league table with network meta-analysis results; - 'comparison-adjusted' funnel plot (Chaimani & Salanti, 2012) <doi:10.1002/jrsm.57>; - net heat plot and design-based decomposition of Cochran's Q according to Krahn et al. (2013) <doi:10.1186/1471-2288-13-35>; - measures characterizing the flow of evidence between two treatments by König et al. (2013) <doi:10.1002/sim.6001>; - automated drawing of network graphs described in Rücker & Schwarzer (2016) <doi:10.1002/jrsm.1143>; - partial order of treatment rankings ('poset') and Hasse diagram for 'poset' (Carlsen & Bruggemann, 2014) <doi:10.1002/cem.2569>; (Rücker & Schwarzer, 2017) <doi:10.1002/jrsm.1270>; - contribution matrix as described in Papakonstantinou et al. (2018) <doi:10.12688/f1000research.14770.3> and Davies et al. (2022) <doi:10.1002/sim.9346>; - subgroup network meta-analysis.

Maintained by Guido Schwarzer. Last updated 10 days ago.

meta-analysisnetwork-meta-analysisrstudio

33 stars 11.84 score 199 scripts 10 dependents

guangchuangyu

hexSticker:Create Hexagon Sticker in R

Helper functions for creating reproducible hexagon sticker purely in R.

Maintained by Guangchuang Yu. Last updated 2 months ago.

ggplot2hexagon-stickerlogostickersvisualization

773 stars 11.79 score 1.3k scripts 8 dependents

briatte

ggnetwork:Geometries to Plot Networks with 'ggplot2'

Geometries to plot network objects with 'ggplot2'.

Maintained by François Briatte. Last updated 9 months ago.

ggplot2network-visualization

149 stars 11.74 score 766 scripts 15 dependents

yutannihilation

gghighlight:Highlight Lines and Points in 'ggplot2'

Make it easier to explore data with highlights.

Maintained by Hiroaki Yutani. Last updated 7 months ago.

523 stars 11.64 score 1.6k scripts 4 dependents

projectmosaic

ggformula:Formula Interface to the Grammar of Graphics

Provides a formula interface to 'ggplot2' graphics.

Maintained by Randall Pruim. Last updated 1 years ago.

38 stars 11.55 score 1.7k scripts 25 dependents

functionaldata

fdapace:Functional Data Analysis and Empirical Dynamics

A versatile package that provides implementation of various methods of Functional Data Analysis (FDA) and Empirical Dynamics. The core of this package is Functional Principal Component Analysis (FPCA), a key technique for functional data analysis, for sparsely or densely sampled random trajectories and time courses, via the Principal Analysis by Conditional Estimation (PACE) algorithm. This core algorithm yields covariance and mean functions, eigenfunctions and principal component (scores), for both functional data and derivatives, for both dense (functional) and sparse (longitudinal) sampling designs. For sparse designs, it provides fitted continuous trajectories with confidence bands, even for subjects with very few longitudinal observations. PACE is a viable and flexible alternative to random effects modeling of longitudinal data. There is also a Matlab version (PACE) that contains some methods not available on fdapace and vice versa. Updates to fdapace were supported by grants from NIH Echo and NSF DMS-1712864 and DMS-2014626. Please cite our package if you use it (You may run the command citation("fdapace") to get the citation format and bibtex entry). References: Wang, J.L., Chiou, J., Müller, H.G. (2016) <doi:10.1146/annurev-statistics-041715-033624>; Chen, K., Zhang, X., Petersen, A., Müller, H.G. (2017) <doi:10.1007/s12561-015-9137-5>.

Maintained by Yidong Zhou. Last updated 9 months ago.

cpp

31 stars 11.54 score 474 scripts 25 dependents

bioc

systemPipeR:systemPipeR: Workflow Environment for Data Analysis and Report Generation

systemPipeR is a multipurpose data analysis workflow environment that unifies R with command-line tools. It enables scientists to analyze many types of large- or small-scale data on local or distributed computer systems with a high level of reproducibility, scalability and portability. At its core is a command-line interface (CLI) that adopts the Common Workflow Language (CWL). This design allows users to choose for each analysis step the optimal R or command-line software. It supports both end-to-end and partial execution of workflows with built-in restart functionalities. Efficient management of complex analysis tasks is accomplished by a flexible workflow control container class. Handling of large numbers of input samples and experimental designs is facilitated by consistent sample annotation mechanisms. As a multi-purpose workflow toolkit, systemPipeR enables users to run existing workflows, customize them or design entirely new ones while taking advantage of widely adopted data structures within the Bioconductor ecosystem. Another important core functionality is the generation of reproducible scientific analysis and technical reports. For result interpretation, systemPipeR offers a wide range of plotting functionality, while an associated Shiny App offers many useful functionalities for interactive result exploration. The vignettes linked from this page include (1) a general introduction, (2) a description of technical details, and (3) a collection of workflow templates.

Maintained by Thomas Girke. Last updated 5 months ago.

geneticsinfrastructuredataimportsequencingrnaseqriboseqchipseqmethylseqsnpgeneexpressioncoveragegenesetenrichmentalignmentqualitycontrolimmunooncologyreportwritingworkflowstepworkflowmanagement

53 stars 11.52 score 344 scripts 3 dependents

bioc

destiny:Creates diffusion maps

Create and plot diffusion maps.

Maintained by Philipp Angerer. Last updated 4 months ago.

cellbiologycellbasedassaysclusteringsoftwarevisualizationdiffusion-mapsdimensionality-reductioncpp

82 stars 11.44 score 792 scripts 1 dependents