Showing 200 of total 571 results (show query)

rstudio

rticles:Article Formats for R Markdown

A suite of custom R Markdown formats and templates for authoring journal articles and conference submissions.

Maintained by Christophe Dervieux. Last updated 14 days ago.

articlejournalpaperrmarkdown

40.5 match 1.5k stars 11.50 score 188 scripts 2 dependents

robjhyndman

rcademy:Tools to assist with academic promotions

Ideas and tools to help with preparing documentation for promotions at universities.

Maintained by Rob Hyndman. Last updated 4 months ago.

24.0 match 14 stars 4.23 score 9 scripts

christophergandrud

networkD3:D3 JavaScript Network Graphs from R

Creates 'D3' 'JavaScript' network, tree, dendrogram, and Sankey graphs from 'R'.

Maintained by Christopher Gandrud. Last updated 6 years ago.

d3jsnetworks

3.3 match 653 stars 13.57 score 3.4k scripts 31 dependents

bioc

annotate:Annotation for microarrays

Using R enviroments for annotation.

Maintained by Bioconductor Package Maintainer. Last updated 3 months ago.

annotationpathwaysgo

3.3 match 11.73 score 800 scripts 252 dependents

carloscinelli

benford.analysis:Benford Analysis for Data Validation and Forensic Analytics

Provides tools that make it easier to validate data using Benford's Law.

Maintained by Carlos Cinelli. Last updated 5 years ago.

6.8 match 61 stars 5.66 score 75 scripts

sbgraves237

Ecdat:Data Sets for Econometrics

Data sets for econometrics, including political science.

Maintained by Spencer Graves. Last updated 2 months ago.

3.8 match 2 stars 7.16 score 740 scripts 3 dependents

futureverse

future.tools:Tools for Working with Futures

Tools for Working with Futures.

Maintained by Henrik Bengtsson. Last updated 8 months ago.

parallel-computingparallel-programming

6.9 match 2 stars 2.78 score

wenjie2wang

jds.rmd:R Markdown Templates for Journal of Data Science

Customized R Markdown templates for authoring articles for Journal of Data Science.

Maintained by Wenjie Wang. Last updated 8 months ago.

7.0 match 1 stars 2.70 score

anestistouloumis

SimCorMultRes:Simulates Correlated Multinomial Responses

Simulates correlated multinomial responses conditional on a marginal model specification.

Maintained by Anestis Touloumis. Last updated 10 months ago.

binarylongitudinal-studiesmultinomialsimulation

3.0 match 7 stars 6.04 score 26 scripts 2 dependents

felixfan

PubMedWordcloud:'Pubmed' Word Clouds

Create a word cloud using the abstract of publications from 'Pubmed'.

Maintained by Felix Yanhui Fan. Last updated 6 years ago.

1.8 match 22 stars 4.79 score 28 scripts

tverbeke

SDaA:Sampling: Design and Analysis

Functions and Datasets from Lohr, S. (1999), Sampling: Design and Analysis, Duxbury.

Maintained by Tobias Verbeke. Last updated 3 years ago.

3.5 match 2.15 score 14 scripts

matthutchinson1

paco:Procrustes Application to Cophylogenetic Analysis

Procrustes analyses to infer co-phylogenetic matching between pairs of phylogenetic trees.

Maintained by Matthew Hutchinson. Last updated 4 years ago.

1.5 match 3.98 score 32 scripts 1 dependents

ropensci

stplanr:Sustainable Transport Planning

Tools for transport planning with an emphasis on spatial transport data and non-motorized modes. The package was originally developed to support the 'Propensity to Cycle Tool', a publicly available strategic cycle network planning tool (Lovelace et al. 2017) <doi:10.5198/jtlu.2016.862>, but has since been extended to support public transport routing and accessibility analysis (Moreno-Monroy et al. 2017) <doi:10.1016/j.jtrangeo.2017.08.012> and routing with locally hosted routing engines such as 'OSRM' (Lowans et al. 2023) <doi:10.1016/j.enconman.2023.117337>. The main functions are for creating and manipulating geographic "desire lines" from origin-destination (OD) data (building on the 'od' package); calculating routes on the transport network locally and via interfaces to routing services such as <https://cyclestreets.net/> (Desjardins et al. 2021) <doi:10.1007/s11116-021-10197-1>; and calculating route segment attributes such as bearing. The package implements the 'travel flow aggregration' method described in Morgan and Lovelace (2020) <doi:10.1177/2399808320942779> and the 'OD jittering' method described in Lovelace et al. (2022) <doi:10.32866/001c.33873>. Further information on the package's aim and scope can be found in the vignettes and in a paper in the R Journal (Lovelace and Ellison 2018) <doi:10.32614/RJ-2018-053>, and in a paper outlining the landscape of open source software for geographic methods in transport planning (Lovelace, 2021) <doi:10.1007/s10109-020-00342-2>.

Maintained by Robin Lovelace. Last updated 5 months ago.

cyclecyclingdesire-linesorigin-destinationpeer-reviewedpubic-transportroute-networkroutesroutingspatialtransporttransport-planningtransportationwalking

0.5 match 424 stars 11.98 score 676 scripts 2 dependents

eco-hydro

phenofit:Extract Remote Sensing Vegetation Phenology

The merits of 'TIMESAT' and 'phenopix' are adopted. Besides, a simple and growing season dividing method and a practical snow elimination method based on Whittaker were proposed. 7 curve fitting methods and 4 phenology extraction methods were provided. Parameters boundary are considered for every curve fitting methods according to their ecological meaning. And 'optimx' is used to select best optimization method for different curve fitting methods. Reference: Kong, D., (2020). R package: A state-of-the-art Vegetation Phenology extraction package, phenofit version 0.3.1, <doi:10.5281/zenodo.5150204>; Kong, D., Zhang, Y., Wang, D., Chen, J., & Gu, X. (2020). Photoperiod Explains the Asynchronization Between Vegetation Carbon Phenology and Vegetation Greenness Phenology. Journal of Geophysical Research: Biogeosciences, 125(8), e2020JG005636. <doi:10.1029/2020JG005636>; Kong, D., Zhang, Y., Gu, X., & Wang, D. (2019). A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 155, 13–24; Zhang, Q., Kong, D., Shi, P., Singh, V.P., Sun, P., 2018. Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change (1982–2013). Agric. For. Meteorol. 248, 408–417. <doi:10.1016/j.agrformet.2017.10.026>.

Maintained by Dongdong Kong. Last updated 3 months ago.

phenologyremote-sensingopenblascppopenmp

0.8 match 76 stars 7.70 score 332 scripts

miicteam

miic:Learning Causal or Non-Causal Graphical Models Using Information Theory

Multivariate Information-based Inductive Causation, better known by its acronym MIIC, is a causal discovery method, based on information theory principles, which learns a large class of causal or non-causal graphical models from purely observational data, while including the effects of unobserved latent variables. Starting from a complete graph, the method iteratively removes dispensable edges, by uncovering significant information contributions from indirect paths, and assesses edge-specific confidences from randomization of available data. The remaining edges are then oriented based on the signature of causality in observational data. The recent more interpretable MIIC extension (iMIIC) further distinguishes genuine causes from putative and latent causal effects, while scaling to very large datasets (hundreds of thousands of samples). Since the version 2.0, MIIC also includes a temporal mode (tMIIC) to learn temporal causal graphs from stationary time series data. MIIC has been applied to a wide range of biological and biomedical data, such as single cell gene expression data, genomic alterations in tumors, live-cell time-lapse imaging data (CausalXtract), as well as medical records of patients. MIIC brings unique insights based on causal interpretation and could be used in a broad range of other data science domains (technology, climatology, economy, ...). For more information, you can refer to: Simon et al., eLife 2024, <doi:10.1101/2024.02.06.579177>, Ribeiro-Dantas et al., iScience 2024, <doi:10.1016/j.isci.2024.109736>, Cabeli et al., NeurIPS 2021, <https://why21.causalai.net/papers/WHY21_24.pdf>, Cabeli et al., Comput. Biol. 2020, <doi:10.1371/journal.pcbi.1007866>, Li et al., NeurIPS 2019, <https://papers.nips.cc/paper/9573-constraint-based-causal-structure-learning-with-consistent-separating-sets>, Verny et al., PLoS Comput. Biol. 2017, <doi:10.1371/journal.pcbi.1005662>, Affeldt et al., UAI 2015, <https://auai.org/uai2015/proceedings/papers/293.pdf>. Changes from the previous 1.5.3 release on CRAN are available at <https://github.com/miicTeam/miic_R_package/blob/master/NEWS.md>.

Maintained by Franck Simon. Last updated 4 months ago.

cppopenmp

0.8 match 27 stars 6.22 score 69 scripts

cran

Compositional:Compositional Data Analysis

Regression, classification, contour plots, hypothesis testing and fitting of distributions for compositional data are some of the functions included. We further include functions for percentages (or proportions). The standard textbook for such data is John Aitchison's (1986) "The statistical analysis of compositional data". Relevant papers include: a) Tsagris M.T., Preston S. and Wood A.T.A. (2011). "A data-based power transformation for compositional data". Fourth International International Workshop on Compositional Data Analysis. <doi:10.48550/arXiv.1106.1451> b) Tsagris M. (2014). "The k-NN algorithm for compositional data: a revised approach with and without zero values present". Journal of Data Science, 12(3): 519--534. <doi:10.6339/JDS.201407_12(3).0008>. c) Tsagris M. (2015). "A novel, divergence based, regression for compositional data". Proceedings of the 28th Panhellenic Statistics Conference, 15-18 April 2015, Athens, Greece, 430--444. <doi:10.48550/arXiv.1511.07600>. d) Tsagris M. (2015). "Regression analysis with compositional data containing zero values". Chilean Journal of Statistics, 6(2): 47--57. <https://soche.cl/chjs/volumes/06/02/Tsagris(2015).pdf>. e) Tsagris M., Preston S. and Wood A.T.A. (2016). "Improved supervised classification for compositional data using the alpha-transformation". Journal of Classification, 33(2): 243--261. <doi:10.1007/s00357-016-9207-5>. f) Tsagris M., Preston S. and Wood A.T.A. (2017). "Nonparametric hypothesis testing for equality of means on the simplex". Journal of Statistical Computation and Simulation, 87(2): 406--422. <doi:10.1080/00949655.2016.1216554>. g) Tsagris M. and Stewart C. (2018). "A Dirichlet regression model for compositional data with zeros". Lobachevskii Journal of Mathematics, 39(3): 398--412. <doi:10.1134/S1995080218030198>. h) Alenazi A. (2019). "Regression for compositional data with compositional data as predictor variables with or without zero values". Journal of Data Science, 17(1): 219--238. <doi:10.6339/JDS.201901_17(1).0010>. i) Tsagris M. and Stewart C. (2020). "A folded model for compositional data analysis". Australian and New Zealand Journal of Statistics, 62(2): 249--277. <doi:10.1111/anzs.12289>. j) Alenazi A.A. (2022). "f-divergence regression models for compositional data". Pakistan Journal of Statistics and Operation Research, 18(4): 867--882. <doi:10.18187/pjsor.v18i4.3969>. k) Tsagris M. and Stewart C. (2022). "A Review of Flexible Transformations for Modeling Compositional Data". In Advances and Innovations in Statistics and Data Science, pp. 225--234. <doi:10.1007/978-3-031-08329-7_10>. l) Alenazi A. (2023). "A review of compositional data analysis and recent advances". Communications in Statistics--Theory and Methods, 52(16): 5535--5567. <doi:10.1080/03610926.2021.2014890>. m) Tsagris M., Alenazi A. and Stewart C. (2023). "Flexible non-parametric regression models for compositional response data with zeros". Statistics and Computing, 33(106). <doi:10.1007/s11222-023-10277-5>. n) Tsagris. M. (2025). "Constrained least squares simplicial-simplicial regression". Statistics and Computing, 35(27). <doi:10.1007/s11222-024-10560-z>. o) Sevinc V. and Tsagris. M. (2024). "Energy Based Equality of Distributions Testing for Compositional Data". <doi:10.48550/arXiv.2412.05199>.

Maintained by Michail Tsagris. Last updated 8 days ago.

1.0 match 2 stars 4.49 score 132 scripts 4 dependents

mikejareds

hermiter:Efficient Sequential and Batch Estimation of Univariate and Bivariate Probability Density Functions and Cumulative Distribution Functions along with Quantiles (Univariate) and Nonparametric Correlation (Bivariate)

Facilitates estimation of full univariate and bivariate probability density functions and cumulative distribution functions along with full quantile functions (univariate) and nonparametric correlation (bivariate) using Hermite series based estimators. These estimators are particularly useful in the sequential setting (both stationary and non-stationary) and one-pass batch estimation setting for large data sets. Based on: Stephanou, Michael, Varughese, Melvin and Macdonald, Iain. "Sequential quantiles via Hermite series density estimation." Electronic Journal of Statistics 11.1 (2017): 570-607 <doi:10.1214/17-EJS1245>, Stephanou, Michael and Varughese, Melvin. "On the properties of Hermite series based distribution function estimators." Metrika (2020) <doi:10.1007/s00184-020-00785-z> and Stephanou, Michael and Varughese, Melvin. "Sequential estimation of Spearman rank correlation using Hermite series estimators." Journal of Multivariate Analysis (2021) <doi:10.1016/j.jmva.2021.104783>.

Maintained by Michael Stephanou. Last updated 5 months ago.

cumulative-distribution-functionkendall-correlation-coefficientonline-algorithmsprobability-density-functionquantilespearman-correlation-coefficientstatisticsstreaming-algorithmsstreaming-datacpp

0.8 match 15 stars 5.58 score 17 scripts

graemetlloyd

Claddis:Measuring Morphological Diversity and Evolutionary Tempo

Measures morphological diversity from discrete character data and estimates evolutionary tempo on phylogenetic trees. Imports morphological data from #NEXUS (Maddison et al. (1997) <doi:10.1093/sysbio/46.4.590>) format with read_nexus_matrix(), and writes to both #NEXUS and TNT format (Goloboff et al. (2008) <doi:10.1111/j.1096-0031.2008.00217.x>). Main functions are test_rates(), which implements AIC and likelihood ratio tests for discrete character rates introduced across Lloyd et al. (2012) <doi:10.1111/j.1558-5646.2011.01460.x>, Brusatte et al. (2014) <doi:10.1016/j.cub.2014.08.034>, Close et al. (2015) <doi:10.1016/j.cub.2015.06.047>, and Lloyd (2016) <doi:10.1111/bij.12746>, and calculate_morphological_distances(), which implements multiple discrete character distance metrics from Gower (1971) <doi:10.2307/2528823>, Wills (1998) <doi:10.1006/bijl.1998.0255>, Lloyd (2016) <doi:10.1111/bij.12746>, and Hopkins and St John (2018) <doi:10.1098/rspb.2018.1784>. This also includes the GED correction from Lehmann et al. (2019) <doi:10.1111/pala.12430>. Multiple functions implement morphospace plots: plot_chronophylomorphospace() implements Sakamoto and Ruta (2012) <doi:10.1371/journal.pone.0039752>, plot_morphospace() implements Wills et al. (1994) <doi:10.1017/S009483730001263X>, plot_changes_on_tree() implements Wang and Lloyd (2016) <doi:10.1098/rspb.2016.0214>, and plot_morphospace_stack() implements Foote (1993) <doi:10.1017/S0094837300015864>. Other functions include safe_taxonomic_reduction(), which implements Wilkinson (1995) <doi:10.1093/sysbio/44.4.501>, map_dollo_changes() implements the Dollo stochastic character mapping of Tarver et al. (2018) <doi:10.1093/gbe/evy096>, and estimate_ancestral_states() implements the ancestral state options of Lloyd (2018) <doi:10.1111/pala.12380>. calculate_tree_length() and reconstruct_ancestral_states() implements the generalised algorithms from Swofford and Maddison (1992; no doi).

Maintained by Graeme T. Lloyd. Last updated 5 months ago.

0.5 match 13 stars 7.90 score 77 scripts 2 dependents

mthrun

DataVisualizations:Visualizations of High-Dimensional Data

Gives access to data visualisation methods that are relevant from the data scientist's point of view. The flagship idea of 'DataVisualizations' is the mirrored density plot (MD-plot) for either classified or non-classified multivariate data published in Thrun, M.C. et al.: "Analyzing the Fine Structure of Distributions" (2020), PLoS ONE, <DOI:10.1371/journal.pone.0238835>. The MD-plot outperforms the box-and-whisker diagram (box plot), violin plot and bean plot and geom_violin plot of ggplot2. Furthermore, a collection of various visualization methods for univariate data is provided. In the case of exploratory data analysis, 'DataVisualizations' makes it possible to inspect the distribution of each feature of a dataset visually through a combination of four methods. One of these methods is the Pareto density estimation (PDE) of the probability density function (pdf). Additionally, visualizations of the distribution of distances using PDE, the scatter-density plot using PDE for two variables as well as the Shepard density plot and the Bland-Altman plot are presented here. Pertaining to classified high-dimensional data, a number of visualizations are described, such as f.ex. the heat map and silhouette plot. A political map of the world or Germany can be visualized with the additional information defined by a classification of countries or regions. By extending the political map further, an uncomplicated function for a Choropleth map can be used which is useful for measurements across a geographic area. For categorical features, the Pie charts, slope charts and fan plots, improved by the ABC analysis, become usable. More detailed explanations are found in the book by Thrun, M.C.: "Projection-Based Clustering through Self-Organization and Swarm Intelligence" (2018) <DOI:10.1007/978-3-658-20540-9>.

Maintained by Michael Thrun. Last updated 2 months ago.

cpp

0.5 match 7 stars 7.54 score 118 scripts 7 dependents

cran

Directional:A Collection of Functions for Directional Data Analysis

A collection of functions for directional data (including massive data, with millions of observations) analysis. Hypothesis testing, discriminant and regression analysis, MLE of distributions and more are included. The standard textbook for such data is the "Directional Statistics" by Mardia, K. V. and Jupp, P. E. (2000). Other references include: a) Paine J.P., Preston S.P., Tsagris M. and Wood A.T.A. (2018). "An elliptically symmetric angular Gaussian distribution". Statistics and Computing 28(3): 689-697. <doi:10.1007/s11222-017-9756-4>. b) Tsagris M. and Alenazi A. (2019). "Comparison of discriminant analysis methods on the sphere". Communications in Statistics: Case Studies, Data Analysis and Applications 5(4):467--491. <doi:10.1080/23737484.2019.1684854>. c) Paine J.P., Preston S.P., Tsagris M. and Wood A.T.A. (2020). "Spherical regression models with general covariates and anisotropic errors". Statistics and Computing 30(1): 153--165. <doi:10.1007/s11222-019-09872-2>. d) Tsagris M. and Alenazi A. (2024). "An investigation of hypothesis testing procedures for circular and spherical mean vectors". Communications in Statistics-Simulation and Computation, 53(3): 1387--1408. <doi:10.1080/03610918.2022.2045499>. e) Yu Z. and Huang X. (2024). A new parameterization for elliptically symmetric angular Gaussian distributions of arbitrary dimension. Electronic Journal of Statistics, 18(1): 301--334. <doi:10.1214/23-EJS2210>. f) Tsagris M. and Alzeley O. (2024). "Circular and spherical projected Cauchy distributions: A Novel Framework for Circular and Directional Data Modeling". Australian & New Zealand Journal of Statistics (Accepted for publication). <doi:10.48550/arXiv.2302.02468>. g) Tsagris M., Papastamoulis P. and Kato S. (2024). "Directional data analysis using the spherical Cauchy and the Poisson kernel-based distribution". <doi:10.48550/arXiv.2409.03292>.

Maintained by Michail Tsagris. Last updated 2 months ago.

0.8 match 3 stars 4.99 score 128 scripts 3 dependents

meganmorbitzer

ddiv:Data Driven I-v Feature Extraction

The Data Driven I-V Feature Extraction is used to extract Current-Voltage (I-V) features from I-V curves. I-V curves indicate the relationship between current and voltage for a solar cell or Photovoltaic (PV) modules. The I-V features such as maximum power point (Pmp), shunt resistance (Rsh), series resistance (Rs),short circuit current (Isc), open circuit voltage (Voc), fill factor (FF), current at maximum power (Imp) and voltage at maximum power(Vmp) contain important information of the performance for PV modules. The traditional method uses the single diode model to model I-V curves and extract I-V features. This package does not use the diode model, but uses data-driven a method which select different linear parts of the I-V curves to extract I-V features. This method also uses a sampling method to calculate uncertainties when extracting I-V features. Also, because of the partially shaded array, "steps" occurs in I-V curves. The "Segmented Regression" method is used to identify steps in I-V curves. This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) Agreement Number DE-EE0007140. Further information can be found in the following paper. [1] Ma, X. et al, 2019. <doi:10.1109/JPHOTOV.2019.2928477>.

Maintained by Megan M. Morbitzer. Last updated 4 years ago.

1.0 match 3.62 score 23 scripts 1 dependents

szymonnowakowski

DMRnet:Delete or Merge Regressors Algorithms for Linear and Logistic Model Selection and High-Dimensional Data

Model selection algorithms for regression and classification, where the predictors can be continuous or categorical and the number of regressors may exceed the number of observations. The selected model consists of a subset of numerical regressors and partitions of levels of factors. Szymon Nowakowski, Piotr Pokarowski, Wojciech Rejchel and Agnieszka Sołtys, 2023. Improving Group Lasso for High-Dimensional Categorical Data. In: Computational Science – ICCS 2023. Lecture Notes in Computer Science, vol 14074, p. 455-470. Springer, Cham. <doi:10.1007/978-3-031-36021-3_47>. Aleksandra Maj-Kańska, Piotr Pokarowski and Agnieszka Prochenka, 2015. Delete or merge regressors for linear model selection. Electronic Journal of Statistics 9(2): 1749-1778. <doi:10.1214/15-EJS1050>. Piotr Pokarowski and Jan Mielniczuk, 2015. Combined l1 and greedy l0 penalized least squares for linear model selection. Journal of Machine Learning Research 16(29): 961-992. <https://www.jmlr.org/papers/volume16/pokarowski15a/pokarowski15a.pdf>. Piotr Pokarowski, Wojciech Rejchel, Agnieszka Sołtys, Michał Frej and Jan Mielniczuk, 2022. Improving Lasso for model selection and prediction. Scandinavian Journal of Statistics, 49(2): 831–863. <doi:10.1111/sjos.12546>.

Maintained by Szymon Nowakowski. Last updated 1 years ago.

group-lassolassopartitionpartition-selectionselectionvariable-selection

0.9 match 1 stars 4.04 score 22 scripts

lcrawlab

mvMAPIT:Multivariate Genome Wide Marginal Epistasis Test

Epistasis, commonly defined as the interaction between genetic loci, is known to play an important role in the phenotypic variation of complex traits. As a result, many statistical methods have been developed to identify genetic variants that are involved in epistasis, and nearly all of these approaches carry out this task by focusing on analyzing one trait at a time. Previous studies have shown that jointly modeling multiple phenotypes can often dramatically increase statistical power for association mapping. In this package, we present the 'multivariate MArginal ePIstasis Test' ('mvMAPIT') – a multi-outcome generalization of a recently proposed epistatic detection method which seeks to detect marginal epistasis or the combined pairwise interaction effects between a given variant and all other variants. By searching for marginal epistatic effects, one can identify genetic variants that are involved in epistasis without the need to identify the exact partners with which the variants interact – thus, potentially alleviating much of the statistical and computational burden associated with conventional explicit search based methods. Our proposed 'mvMAPIT' builds upon this strategy by taking advantage of correlation structure between traits to improve the identification of variants involved in epistasis. We formulate 'mvMAPIT' as a multivariate linear mixed model and develop a multi-trait variance component estimation algorithm for efficient parameter inference and P-value computation. Together with reasonable model approximations, our proposed approach is scalable to moderately sized genome-wide association studies. Crawford et al. (2017) <doi:10.1371/journal.pgen.1006869>. Stamp et al. (2023) <doi:10.1093/g3journal/jkad118>.

Maintained by Julian Stamp. Last updated 3 months ago.

cppepistasisepistasis-analysisgwasgwas-toolslinear-mixed-modelsmapitmvmapitvariance-componentsopenblascppopenmp

0.5 match 11 stars 6.90 score 17 scripts 1 dependents

mjlajeunesse

metagear:Comprehensive Research Synthesis Tools for Systematic Reviews and Meta-Analysis

Functionalities for facilitating systematic reviews, data extractions, and meta-analyses. It includes a GUI (graphical user interface) to help screen the abstracts and titles of bibliographic data; tools to assign screening effort across multiple collaborators/reviewers and to assess inter- reviewer reliability; tools to help automate the download and retrieval of journal PDF articles from online databases; figure and image extractions from PDFs; web scraping of citations; automated and manual data extraction from scatter-plot and bar-plot images; PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagrams; simple imputation tools to fill gaps in incomplete or missing study parameters; generation of random effects sizes for Hedges' d, log response ratio, odds ratio, and correlation coefficients for Monte Carlo experiments; covariance equations for modelling dependencies among multiple effect sizes (e.g., effect sizes with a common control); and finally summaries that replicate analyses and outputs from widely used but no longer updated meta-analysis software (i.e., metawin). Funding for this package was supported by National Science Foundation (NSF) grants DBI-1262545 and DEB-1451031. CITE: Lajeunesse, M.J. (2016) Facilitating systematic reviews, data extraction and meta-analysis with the metagear package for R. Methods in Ecology and Evolution 7, 323-330 <doi:10.1111/2041-210X.12472>.

Maintained by Marc J. Lajeunesse. Last updated 4 years ago.

0.5 match 14 stars 6.71 score 91 scripts

loukiaspin

rnmamod:Bayesian Network Meta-Analysis with Missing Participants

A comprehensive suite of functions to perform and visualise pairwise and network meta-analysis with aggregate binary or continuous missing participant outcome data. The package covers core Bayesian one-stage models implemented in a systematic review with multiple interventions, including fixed-effect and random-effects network meta-analysis, meta-regression, evaluation of the consistency assumption via the node-splitting approach and the unrelated mean effects model (original and revised model proposed by Spineli, (2022) <doi:10.1177/0272989X211068005>), and sensitivity analysis (see Spineli et al., (2021) <doi:10.1186/s12916-021-02195-y>). Missing participant outcome data are addressed in all models of the package (see Spineli, (2019) <doi:10.1186/s12874-019-0731-y>, Spineli et al., (2019) <doi:10.1002/sim.8207>, Spineli, (2019) <doi:10.1016/j.jclinepi.2018.09.002>, and Spineli et al., (2021) <doi:10.1002/jrsm.1478>). The robustness to primary analysis results can also be investigated using a novel intuitive index (see Spineli et al., (2021) <doi:10.1177/0962280220983544>). Methods to evaluate the transitivity assumption quantitatively are provided. The package also offers a rich, user-friendly visualisation toolkit that aids in appraising and interpreting the results thoroughly and preparing the manuscript for journal submission. The visualisation tools comprise the network plot, forest plots, panel of diagnostic plots, heatmaps on the extent of missing participant outcome data in the network, league heatmaps on estimation and prediction, rankograms, Bland-Altman plot, leverage plot, deviance scatterplot, heatmap of robustness, barplot of Kullback-Leibler divergence, heatmap of comparison dissimilarities and dendrogram of comparison clustering. The package also allows the user to export the results to an Excel file at the working directory.

Maintained by Loukia Spineli. Last updated 3 months ago.

jagscpp

0.5 match 5 stars 6.68 score 12 scripts

yinlilin

hibayes:Individual-Level, Summary-Level and Single-Step Bayesian Regression Model

A user-friendly tool to fit Bayesian regression models. It can fit 3 types of Bayesian models using individual-level, summary-level, and individual plus pedigree-level (single-step) data for both Genomic prediction/selection (GS) and Genome-Wide Association Study (GWAS), it was designed to estimate joint effects and genetic parameters for a complex trait, including: (1) fixed effects and coefficients of covariates, (2) environmental random effects, and its corresponding variance, (3) genetic variance, (4) residual variance, (5) heritability, (6) genomic estimated breeding values (GEBV) for both genotyped and non-genotyped individuals, (7) SNP effect size, (8) phenotype/genetic variance explained (PVE) for single or multiple SNPs, (9) posterior probability of association of the genomic window (WPPA), (10) posterior inclusive probability (PIP). The functions are not limited, we will keep on going in enriching it with more features. References: Meuwissen et al. (2001) <doi:10.1093/genetics/157.4.1819>; Gustavo et al. (2013) <doi:10.1534/genetics.112.143313>; Habier et al. (2011) <doi:10.1186/1471-2105-12-186>; Yi et al. (2008) <doi:10.1534/genetics.107.085589>; Zhou et al. (2013) <doi:10.1371/journal.pgen.1003264>; Moser et al. (2015) <doi:10.1371/journal.pgen.1004969>; Lloyd-Jones et al. (2019) <doi:10.1038/s41467-019-12653-0>; Henderson (1976) <doi:10.2307/2529339>; Fernando et al. (2014) <doi:10.1186/1297-9686-46-50>.

Maintained by Lilin Yin. Last updated 1 years ago.

openblascppopenmp

0.8 match 48 stars 4.42 score 11 scripts