Showing 200 of total 308 results (show query)

wasquith

lmomco:L-Moments, Censored L-Moments, Trimmed L-Moments, L-Comoments, and Many Distributions

Extensive functions for Lmoments (LMs) and probability-weighted moments (PWMs), distribution parameter estimation, LMs for distributions, LM ratio diagrams, multivariate Lcomoments, and asymmetric (asy) trimmed LMs (TLMs). Maximum likelihood and maximum product spacings estimation are available. Right-tail and left-tail LM censoring by threshold or indicator variable are available. LMs of residual (resid) and reversed (rev) residual life are implemented along with 13 quantile operators for reliability analyses. Exact analytical bootstrap estimates of order statistics, LMs, and LM var-covars are available. Harri-Coble Tau34-squared Normality Test is available. Distributions with L, TL, and added (+) support for right-tail censoring (RC) encompass: Asy Exponential (Exp) Power [L], Asy Triangular [L], Cauchy [TL], Eta-Mu [L], Exp. [L], Gamma [L], Generalized (Gen) Exp Poisson [L], Gen Extreme Value [L], Gen Lambda [L, TL], Gen Logistic [L], Gen Normal [L], Gen Pareto [L+RC, TL], Govindarajulu [L], Gumbel [L], Kappa [L], Kappa-Mu [L], Kumaraswamy [L], Laplace [L], Linear Mean Residual Quantile Function [L], Normal [L], 3p log-Normal [L], Pearson Type III [L], Polynomial Density-Quantile 3 and 4 [L], Rayleigh [L], Rev-Gumbel [L+RC], Rice [L], Singh Maddala [L], Slash [TL], 3p Student t [L], Truncated Exponential [L], Wakeby [L], and Weibull [L].

Maintained by William Asquith. Last updated 1 months ago.

flood-frequency-analysisl-momentsmle-estimationmps-estimationprobability-distributionrainfall-frequency-analysisreliability-analysisrisk-analysissurvival-analysis

13.3 match 2 stars 8.06 score 458 scripts 38 dependents

tim-tu

weibulltools:Statistical Methods for Life Data Analysis

Provides statistical methods and visualizations that are often used in reliability engineering. Comprises a compact and easily accessible set of methods and visualization tools that make the examination and adjustment as well as the analysis and interpretation of field data (and bench tests) as simple as possible. Non-parametric estimators like Median Ranks, Kaplan-Meier (Abernethy, 2006, <ISBN:978-0-9653062-3-2>), Johnson (Johnson, 1964, <ISBN:978-0444403223>), and Nelson-Aalen for failure probability estimation within samples that contain failures as well as censored data are included. The package supports methods like Maximum Likelihood and Rank Regression, (Genschel and Meeker, 2010, <DOI:10.1080/08982112.2010.503447>) for the estimation of multiple parametric lifetime distributions, as well as the computation of confidence intervals of quantiles and probabilities using the delta method related to Fisher's confidence intervals (Meeker and Escobar, 1998, <ISBN:9780471673279>) and the beta-binomial confidence bounds. If desired, mixture model analysis can be done with segmented regression and the EM algorithm. Besides the well-known Weibull analysis, the package also contains Monte Carlo methods for the correction and completion of imprecisely recorded or unknown lifetime characteristics. (Verband der Automobilindustrie e.V. (VDA), 2016, <ISSN:0943-9412>). Plots are created statically ('ggplot2') or interactively ('plotly') and can be customized with functions of the respective visualization package. The graphical technique of probability plotting as well as the addition of regression lines and confidence bounds to existing plots are supported.

Maintained by Tim-Gunnar Hensel. Last updated 2 years ago.

field-data-analysisinteractive-visualizationsplotlyreliability-analysisweibull-analysisweibulltoolsopenblascpp

16.7 match 13 stars 6.15 score 54 scripts

cran

drc:Analysis of Dose-Response Curves

Analysis of dose-response data is made available through a suite of flexible and versatile model fitting and after-fitting functions.

Maintained by Christian Ritz. Last updated 9 years ago.

7.6 match 8 stars 8.39 score 1.4k scripts 28 dependents

r-forge

distr:Object Oriented Implementation of Distributions

S4-classes and methods for distributions.

Maintained by Peter Ruckdeschel. Last updated 2 months ago.

5.3 match 8.84 score 327 scripts 32 dependents

raphaelhartmann

ream:Density, Distribution, and Sampling Functions for Evidence Accumulation Models

Calculate the probability density functions (PDFs) for two threshold evidence accumulation models (EAMs). These are defined using the following Stochastic Differential Equation (SDE), dx(t) = v(x(t),t)*dt+D(x(t),t)*dW, where x(t) is the accumulated evidence at time t, v(x(t),t) is the drift rate, D(x(t),t) is the noise scale, and W is the standard Wiener process. The boundary conditions of this process are the upper and lower decision thresholds, represented by b_u(t) and b_l(t), respectively. Upper threshold b_u(t) > 0, while lower threshold b_l(t) < 0. The initial condition of this process x(0) = z where b_l(t) < z < b_u(t). We represent this as the relative start point w = z/(b_u(0)-b_l(0)), defined as a ratio of the initial threshold location. This package generates the PDF using the same approach as the 'python' package it is based upon, 'PyBEAM' by Murrow and Holmes (2023) <doi:10.3758/s13428-023-02162-w>. First, it converts the SDE model into the forwards Fokker-Planck equation dp(x,t)/dt = d(v(x,t)*p(x,t))/dt-0.5*d^2(D(x,t)^2*p(x,t))/dx^2, then solves this equation using the Crank-Nicolson method to determine p(x,t). Finally, it calculates the flux at the decision thresholds, f_i(t) = 0.5*d(D(x,t)^2*p(x,t))/dx evaluated at x = b_i(t), where i is the relevant decision threshold, either upper (i = u) or lower (i = l). The flux at each thresholds f_i(t) is the PDF for each threshold, specifically its PDF. We discuss further details of this approach in this package and 'PyBEAM' publications. Additionally, one can calculate the cumulative distribution functions of and sampling from the EAMs.

Maintained by Raphael Hartmann. Last updated 2 months ago.

cpp

7.1 match 2 stars 5.04 score 2 scripts

drodriguezperez

growthmodels:Nonlinear Growth Models

A compilation of nonlinear growth models.

Maintained by Daniel Rodriguez. Last updated 7 years ago.

7.3 match 21 stars 4.60 score 38 scripts

drizopoulos

JM:Joint Modeling of Longitudinal and Survival Data

Shared parameter models for the joint modeling of longitudinal and time-to-event data.

Maintained by Dimitris Rizopoulos. Last updated 3 years ago.

5.9 match 2 stars 4.93 score 112 scripts 1 dependents

swihart

event:Event History Procedures and Models

Functions for setting up and analyzing event history data.

Maintained by Bruce Swihart. Last updated 8 years ago.

fortran

5.3 match 1 stars 4.74 score 548 scripts

pik-piam

mredgebuildings:Prepare data to be used by the EDGE-Buildings model

Prepare data to be used by the EDGE-Buildings model.

Maintained by Robin Hasse. Last updated 1 days ago.

5.4 match 3.72 score

tpetzoldt

FAdist:Distributions that are Sometimes Used in Hydrology

Probability distributions that are sometimes useful in hydrology.

Maintained by Thomas Petzoldt. Last updated 3 years ago.

1.9 match 4 stars 4.49 score 51 scripts 1 dependents

cran

mistr:Mixture and Composite Distributions

A flexible computational framework for mixture distributions with the focus on the composite models.

Maintained by Lukas Sablica. Last updated 2 years ago.

1.8 match 4.28 score 80 scripts 4 dependents

mahditeimouri

ForestFit:Statistical Modelling for Plant Size Distributions

Developed for the following tasks. 1 ) Computing the probability density function, cumulative distribution function, random generation, and estimating the parameters of the eleven mixture models. 2 ) Point estimation of the parameters of two - parameter Weibull distribution using twelve methods and three - parameter Weibull distribution using nine methods. 3 ) The Bayesian inference for the three - parameter Weibull distribution. 4 ) Estimating parameters of the three - parameter Birnbaum - Saunders, generalized exponential, and Weibull distributions fitted to grouped data using three methods including approximated maximum likelihood, expectation maximization, and maximum likelihood. 5 ) Estimating the parameters of the gamma, log-normal, and Weibull mixture models fitted to the grouped data through the EM algorithm, 6 ) Estimating parameters of the nonlinear height curve fitted to the height - diameter observation, 7 ) Estimating parameters, computing probability density function, cumulative distribution function, and generating realizations from gamma shape mixture model introduced by Venturini et al. (2008) <doi:10.1214/07-AOAS156> , 8 ) The Bayesian inference, computing probability density function, cumulative distribution function, and generating realizations from univariate and bivariate Johnson SB distribution, 9 ) Robust multiple linear regression analysis when error term follows skewed t distribution, 10 ) Estimating parameters of a given distribution fitted to grouped data using method of maximum likelihood, and 11 ) Estimating parameters of the Johnson SB distribution through the Bayesian, method of moment, conditional maximum likelihood, and two - percentile method.

Maintained by Mahdi Teimouri. Last updated 2 months ago.

7.7 match 1.00 score 2 scripts

begglest

BayesCTDesign:Two Arm Bayesian Clinical Trial Design with and Without Historical Control Data

A set of functions to help clinical trial researchers calculate power and sample size for two-arm Bayesian randomized clinical trials that do or do not incorporate historical control data. At some point during the design process, a clinical trial researcher who is designing a basic two-arm Bayesian randomized clinical trial needs to make decisions about power and sample size within the context of hypothesized treatment effects. Through simulation, the simple_sim() function will estimate power and other user specified clinical trial characteristics at user specified sample sizes given user defined scenarios about treatment effect,control group characteristics, and outcome. If the clinical trial researcher has access to historical control data, then the researcher can design a two-arm Bayesian randomized clinical trial that incorporates the historical data. In such a case, the researcher needs to work through the potential consequences of historical and randomized control differences on trial characteristics, in addition to working through issues regarding power in the context of sample size, treatment effect size, and outcome. If a researcher designs a clinical trial that will incorporate historical control data, the researcher needs the randomized controls to be from the same population as the historical controls. What if this is not the case when the designed trial is implemented? During the design phase, the researcher needs to investigate the negative effects of possible historic/randomized control differences on power, type one error, and other trial characteristics. Using this information, the researcher should design the trial to mitigate these negative effects. Through simulation, the historic_sim() function will estimate power and other user specified clinical trial characteristics at user specified sample sizes given user defined scenarios about historical and randomized control differences as well as treatment effects and outcomes. The results from historic_sim() and simple_sim() can be printed with print_table() and graphed with plot_table() methods. Outcomes considered are Gaussian, Poisson, Bernoulli, Lognormal, Weibull, and Piecewise Exponential. The methods are described in Eggleston et al. (2021) <doi:10.18637/jss.v100.i21>.

Maintained by Barry Eggleston. Last updated 3 years ago.

2.4 match 2 stars 3.15 score 14 scripts