Showing 200 of total 277 results (show query)

bsvars

bsvars:Bayesian Estimation of Structural Vector Autoregressive Models

Provides fast and efficient procedures for Bayesian analysis of Structural Vector Autoregressions. This package estimates a wide range of models, including homo-, heteroskedastic, and non-normal specifications. Structural models can be identified by adjustable exclusion restrictions, time-varying volatility, or non-normality. They all include a flexible three-level equation-specific local-global hierarchical prior distribution for the estimated level of shrinkage for autoregressive and structural parameters. Additionally, the package facilitates predictive and structural analyses such as impulse responses, forecast error variance and historical decompositions, forecasting, verification of heteroskedasticity, non-normality, and hypotheses on autoregressive parameters, as well as analyses of structural shocks, volatilities, and fitted values. Beautiful plots, informative summary functions, and extensive documentation including the vignette by Woźniak (2024) <doi:10.48550/arXiv.2410.15090> complement all this. The implemented techniques align closely with those presented in Lütkepohl, Shang, Uzeda, & Woźniak (2024) <doi:10.48550/arXiv.2404.11057>, Lütkepohl & Woźniak (2020) <doi:10.1016/j.jedc.2020.103862>, and Song & Woźniak (2021) <doi:10.1093/acrefore/9780190625979.013.174>. The 'bsvars' package is aligned regarding objects, workflows, and code structure with the R package 'bsvarSIGNs' by Wang & Woźniak (2024) <doi:10.32614/CRAN.package.bsvarSIGNs>, and they constitute an integrated toolset.

Maintained by Tomasz Woźniak. Last updated 1 months ago.

bayesian-inferenceeconometricsvector-autoregressionopenblascppopenmp

57.1 match 46 stars 7.67 score 32 scripts 1 dependents

r-spatial

spatialreg:Spatial Regression Analysis

A collection of all the estimation functions for spatial cross-sectional models (on lattice/areal data using spatial weights matrices) contained up to now in 'spdep'. These model fitting functions include maximum likelihood methods for cross-sectional models proposed by 'Cliff' and 'Ord' (1973, ISBN:0850860369) and (1981, ISBN:0850860814), fitting methods initially described by 'Ord' (1975) <doi:10.1080/01621459.1975.10480272>. The models are further described by 'Anselin' (1988) <doi:10.1007/978-94-015-7799-1>. Spatial two stage least squares and spatial general method of moment models initially proposed by 'Kelejian' and 'Prucha' (1998) <doi:10.1023/A:1007707430416> and (1999) <doi:10.1111/1468-2354.00027> are provided. Impact methods and MCMC fitting methods proposed by 'LeSage' and 'Pace' (2009) <doi:10.1201/9781420064254> are implemented for the family of cross-sectional spatial regression models. Methods for fitting the log determinant term in maximum likelihood and MCMC fitting are compared by 'Bivand et al.' (2013) <doi:10.1111/gean.12008>, and model fitting methods by 'Bivand' and 'Piras' (2015) <doi:10.18637/jss.v063.i18>; both of these articles include extensive lists of references. A recent review is provided by 'Bivand', 'Millo' and 'Piras' (2021) <doi:10.3390/math9111276>. 'spatialreg' >= 1.1-* corresponded to 'spdep' >= 1.1-1, in which the model fitting functions were deprecated and passed through to 'spatialreg', but masked those in 'spatialreg'. From versions 1.2-*, the functions have been made defunct in 'spdep'. From version 1.3-6, add Anselin-Kelejian (1997) test to `stsls` for residual spatial autocorrelation <doi:10.1177/016001769702000109>.

Maintained by Roger Bivand. Last updated 4 days ago.

bayesianimpactsmaximum-likelihoodspatial-dependencespatial-econometricsspatial-regressionopenblas

10.3 match 46 stars 12.92 score 916 scripts 24 dependents

bsvars

bsvarSIGNs:Bayesian SVARs with Sign, Zero, and Narrative Restrictions

Implements state-of-the-art algorithms for the Bayesian analysis of Structural Vector Autoregressions (SVARs) identified by sign, zero, and narrative restrictions. The core model is based on a flexible Vector Autoregression with estimated hyper-parameters of the Minnesota prior and the dummy observation priors as in Giannone, Lenza, Primiceri (2015) <doi:10.1162/REST_a_00483>. The sign restrictions are implemented employing the methods proposed by Rubio-Ramírez, Waggoner & Zha (2010) <doi:10.1111/j.1467-937X.2009.00578.x>, while identification through sign and zero restrictions follows the approach developed by Arias, Rubio-Ramírez, & Waggoner (2018) <doi:10.3982/ECTA14468>. Furthermore, our tool provides algorithms for identification via sign and narrative restrictions, in line with the methods introduced by Antolín-Díaz and Rubio-Ramírez (2018) <doi:10.1257/aer.20161852>. Users can also estimate a model with sign, zero, and narrative restrictions imposed at once. The package facilitates predictive and structural analyses using impulse responses, forecast error variance and historical decompositions, forecasting and conditional forecasting, as well as analyses of structural shocks and fitted values. All this is complemented by colourful plots, user-friendly summary functions, and comprehensive documentation including the vignette by Wang & Woźniak (2024) <doi:10.48550/arXiv.2501.16711>. The 'bsvarSIGNs' package is aligned regarding objects, workflows, and code structure with the R package 'bsvars' by Woźniak (2024) <doi:10.32614/CRAN.package.bsvars>, and they constitute an integrated toolset. It was granted the Di Cook Open-Source Statistical Software Award by the Statistical Society of Australia in 2024.

Maintained by Xiaolei Wang. Last updated 2 months ago.

bayesian-inferenceeconometricsvector-autoregressionopenblascppopenmp

16.0 match 13 stars 6.21 score 10 scripts

rtsay1

MTS:All-Purpose Toolkit for Analyzing Multivariate Time Series (MTS) and Estimating Multivariate Volatility Models

Multivariate Time Series (MTS) is a general package for analyzing multivariate linear time series and estimating multivariate volatility models. It also handles factor models, constrained factor models, asymptotic principal component analysis commonly used in finance and econometrics, and principal volatility component analysis. (a) For the multivariate linear time series analysis, the package performs model specification, estimation, model checking, and prediction for many widely used models, including vector AR models, vector MA models, vector ARMA models, seasonal vector ARMA models, VAR models with exogenous variables, multivariate regression models with time series errors, augmented VAR models, and Error-correction VAR models for co-integrated time series. For model specification, the package performs structural specification to overcome the difficulties of identifiability of VARMA models. The methods used for structural specification include Kronecker indices and Scalar Component Models. (b) For multivariate volatility modeling, the MTS package handles several commonly used models, including multivariate exponentially weighted moving-average volatility, Cholesky decomposition volatility models, dynamic conditional correlation (DCC) models, copula-based volatility models, and low-dimensional BEKK models. The package also considers multiple tests for conditional heteroscedasticity, including rank-based statistics. (c) Finally, the MTS package also performs forecasting using diffusion index , transfer function analysis, Bayesian estimation of VAR models, and multivariate time series analysis with missing values.Users can also use the package to simulate VARMA models, to compute impulse response functions of a fitted VARMA model, and to calculate theoretical cross-covariance matrices of a given VARMA model.

Maintained by Ruey S. Tsay. Last updated 3 years ago.

cpp

7.5 match 6 stars 6.52 score 272 scripts 6 dependents

cran

fGarch:Rmetrics - Autoregressive Conditional Heteroskedastic Modelling

Analyze and model heteroskedastic behavior in financial time series.

Maintained by Georgi N. Boshnakov. Last updated 12 months ago.

fortran

3.0 match 6 stars 8.20 score 1.1k scripts 51 dependents

yuimaproject

yuima:The YUIMA Project Package for SDEs

Simulation and Inference for SDEs and Other Stochastic Processes.

Maintained by Stefano M. Iacus. Last updated 3 days ago.

openblascpp

3.4 match 9 stars 7.26 score 92 scripts 2 dependents

wbnicholson

BigVAR:Dimension Reduction Methods for Multivariate Time Series

Estimates VAR and VARX models with Structured Penalties.

Maintained by Will Nicholson. Last updated 6 months ago.

openblascpp

2.8 match 57 stars 7.23 score 100 scripts 1 dependents

cran

ftsa:Functional Time Series Analysis

Functions for visualizing, modeling, forecasting and hypothesis testing of functional time series.

Maintained by Han Lin Shang. Last updated 23 days ago.

3.4 match 6 stars 5.95 score 96 scripts 10 dependents

cran

VAR.spec:Allows Specifying a Bivariate VAR (Vector Autoregression) with Desired Spectral Characteristics

The spectral characteristics of a bivariate series (Marginal Spectra, Coherency- and Phase-Spectrum) determine whether there is a strong presence of short-, medium-, or long-term fluctuations (components of certain frequencies in the spectral representation of the series) in each one of them. These are induced by strong peaks of the marginal spectra of each series at the corresponding frequencies. The spectral characteristics also determine how strongly these short-, medium-, or long-term fluctuations of the two series are correlated between the two series. Information on this is provided by the Coherency spectrum at the corresponding frequencies. Finally, certain fluctuations of the two series may be lagged to each other. Information on this is provided by the Phase spectrum at the corresponding frequencies. The idea in this package is to define a VAR (Vector autoregression) model with desired spectral characteristics by specifying a number of polynomials, required to define the VAR. See Ioannidis(2007) <doi:10.1016/j.jspi.2005.12.013>. These are specified via their roots, instead of via their coefficients. This is an idea borrowed from the Time Series Library of R. Dahlhaus, where it is used for defining ARMA models for univariate time series. This way, one may e.g. specify a VAR inducing a strong presence of long-term fluctuations in series 1 and in series 2, which are weakly correlated, but lagged by a number of time units to each other, while short-term fluctuations in series 1 and in series 2, are strongly present only in one of the two series, while they are strongly correlated to each other between the two series. Simulation from such models allows studying the behavior of data-analysis tools, such as estimation of the spectra, under different circumstances, as e.g. peaks in the spectra, generating bias, induced by leakage.

Maintained by Evangelos Ioannidis. Last updated 9 months ago.

16.8 match 1.00 score

christophergandrud

dynsim:Dynamic Simulations of Autoregressive Relationships

Dynamic simulations and graphical depictions of autoregressive relationships.

Maintained by Christopher Gandrud. Last updated 4 years ago.

5.6 match 1 stars 2.70 score 4 scripts

r-cas

Ryacas:R Interface to the 'Yacas' Computer Algebra System

Interface to the 'yacas' computer algebra system (<http://www.yacas.org/>).

Maintained by Mikkel Meyer Andersen. Last updated 2 years ago.

cpp

1.3 match 40 stars 10.15 score 167 scripts 14 dependents

mpiktas

midasr:Mixed Data Sampling Regression

Methods and tools for mixed frequency time series data analysis. Allows estimation, model selection and forecasting for MIDAS regressions.

Maintained by Vaidotas Zemlys-Balevičius. Last updated 3 years ago.

1.8 match 77 stars 5.76 score 150 scripts

cran

mAr:Multivariate AutoRegressive Analysis

R functions for the estimation and eigen-decomposition of multivariate autoregressive models.

Maintained by S. M. Barbosa. Last updated 3 years ago.

5.7 match 1 stars 1.78 score 2 dependents

edmhlin

BAYSTAR:On Bayesian Analysis of Threshold Autoregressive Models

Fit two-regime threshold autoregressive (TAR) models by Markov chain Monte Carlo methods.

Maintained by Edward M.H. Lin. Last updated 3 years ago.

5.3 match 2 stars 1.30 score 4 scripts

dnychka

LatticeKrig:Multi-Resolution Kriging Based on Markov Random Fields

Methods for the interpolation of large spatial datasets. This package uses a basis function approach that provides a surface fitting method that can approximate standard spatial data models. Using a large number of basis functions allows for estimates that can come close to interpolating the observations (a spatial model with a small nugget variance.) Moreover, the covariance model for this method can approximate the Matern covariance family but also allows for a multi-resolution model and supports efficient computation of the profile likelihood for estimating covariance parameters. This is accomplished through compactly supported basis functions and a Markov random field model for the basis coefficients. These features lead to sparse matrices for the computations and this package makes of the R spam package for sparse linear algebra. An extension of this version over previous ones ( < 5.4 ) is the support for different geometries besides a rectangular domain. The Markov random field approach combined with a basis function representation makes the implementation of different geometries simple where only a few specific R functions need to be added with most of the computation and evaluation done by generic routines that have been tuned to be efficient. One benefit of this package's model/approach is the facility to do unconditional and conditional simulation of the field for large numbers of arbitrary points. There is also the flexibility for estimating non-stationary covariances and also the case when the observations are a linear combination (e.g. an integral) of the spatial process. Included are generic methods for prediction, standard errors for prediction, plotting of the estimated surface and conditional and unconditional simulation. See the 'LatticeKrigRPackage' GitHub repository for a vignette of this package. Development of this package was supported in part by the National Science Foundation Grant 1417857 and the National Center for Atmospheric Research.

Maintained by Douglas Nychka. Last updated 5 months ago.

fortran

1.8 match 2.89 score 130 scripts 1 dependents

paulsmirnov

robcor:Robust Correlations

Robust pairwise correlations based on estimates of scale, particularly on "FastQn" one-step M-estimate.

Maintained by Paul Smirnov. Last updated 3 years ago.

1.8 match 2.58 score 21 scripts 6 dependents

jwboys26

KoulMde:Koul's Minimum Distance Estimation in Regression and Image Segmentation Problems

Many methods are developed to deal with two major statistical problems: image segmentation and nonparametric estimation in various regression models. Image segmentation is nowadays gaining a lot of attention from various scientific subfields. Especially, image segmentation has been popular in medical research such as magnetic resonance imaging (MRI) analysis. When a patient suffers from some brain diseases such as dementia and Parkinson's disease, those diseases can be easily diagnosed in brain MRI: the area affected by those diseases is brightly expressed in MRI, which is called a white lesion. For the purpose of medical research, locating and segment those white lesions in MRI is a critical issue; it can be done manually. However, manual segmentation is very expensive in that it is error-prone and demands a huge amount of time. Therefore, supervised machine learning has emerged as an alternative solution. Despite its powerful performance in a classification problem such as hand-written digits, supervised machine learning has not shown the same satisfactory result in MRI analysis. Setting aside all issues of the supervised machine learning, it exposed a critical problem when employed for MRI analysis: it requires time-consuming data labeling. Thus, there is a strong demand for an unsupervised approach, and this package - based on Hira L. Koul (1986) <DOI:10.1214/aos/1176350059> - proposes an efficient method for simple image segmentation - here, "simple" means that an image is black-and-white - which can easily be applied to MRI analysis. This package includes a function GetSegImage(): when a black-and-white image is given as an input, GetSegImage() separates an area of white pixels - which corresponds to a white lesion in MRI - from the given image. For the second problem, consider linear regression model and autoregressive model of order q where errors in the linear regression model and innovations in the autoregression model are independent and symmetrically distributed. Hira L. Koul (1986) <DOI:10.1214/aos/1176350059> proposed a nonparametric minimum distance estimation method by minimizing L2-type distance between certain weighted residual empirical processes. He also proposed a simpler version of the loss function by using symmetry of the integrating measure in the distance. Kim (2018) <DOI:10.1080/00949655.2017.1392527> proposed a fast computational method which enables practitioners to compute the minimum distance estimator of the vector of general multiple regression parameters for several integrating measures. This package contains three functions: KoulLrMde(), KoulArMde(), and Koul2StageMde(). The former two provide minimum distance estimators for linear regression model and autoregression model, respectively, where both are based on Koul's method. These two functions take much less time for the computation than those based on parametric minimum distance estimation methods. Koul2StageMde() provides estimators for regression and autoregressive coefficients of linear regression model with autoregressive errors through minimum distant method of two stages. The new version is written in Rcpp and dramatically reduces computational time.

Maintained by Jiwoong Kim. Last updated 5 years ago.

openblascpp

4.3 match 1.00 score 3 scripts