Showing 158 of total 158 results (show query)

branchlab

metasnf:Meta Clustering with Similarity Network Fusion

Framework to facilitate patient subtyping with similarity network fusion and meta clustering. The similarity network fusion (SNF) algorithm was introduced by Wang et al. (2014) in <doi:10.1038/nmeth.2810>. SNF is a data integration approach that can transform high-dimensional and diverse data types into a single similarity network suitable for clustering with minimal loss of information from each initial data source. The meta clustering approach was introduced by Caruana et al. (2006) in <doi:10.1109/ICDM.2006.103>. Meta clustering involves generating a wide range of cluster solutions by adjusting clustering hyperparameters, then clustering the solutions themselves into a manageable number of qualitatively similar solutions, and finally characterizing representative solutions to find ones that are best for the user's specific context. This package provides a framework to easily transform multi-modal data into a wide range of similarity network fusion-derived cluster solutions as well as to visualize, characterize, and validate those solutions. Core package functionality includes easy customization of distance metrics, clustering algorithms, and SNF hyperparameters to generate diverse clustering solutions; calculation and plotting of associations between features, between patients, and between cluster solutions; and standard cluster validation approaches including resampled measures of cluster stability, standard metrics of cluster quality, and label propagation to evaluate generalizability in unseen data. Associated vignettes guide the user through using the package to identify patient subtypes while adhering to best practices for unsupervised learning.

Maintained by Prashanth S Velayudhan. Last updated 3 days ago.

bioinformaticsclusteringmetaclusteringsnf

8 stars 8.21 score 30 scripts

bioc

geneXtendeR:Optimized Functional Annotation Of ChIP-seq Data

geneXtendeR optimizes the functional annotation of ChIP-seq peaks by exploring relative differences in annotating ChIP-seq peak sets to variable-length gene bodies. In contrast to prior techniques, geneXtendeR considers peak annotations beyond just the closest gene, allowing users to see peak summary statistics for the first-closest gene, second-closest gene, ..., n-closest gene whilst ranking the output according to biologically relevant events and iteratively comparing the fidelity of peak-to-gene overlap across a user-defined range of upstream and downstream extensions on the original boundaries of each gene's coordinates. Since different ChIP-seq peak callers produce different differentially enriched peaks with a large variance in peak length distribution and total peak count, annotating peak lists with their nearest genes can often be a noisy process. As such, the goal of geneXtendeR is to robustly link differentially enriched peaks with their respective genes, thereby aiding experimental follow-up and validation in designing primers for a set of prospective gene candidates during qPCR.

Maintained by Bohdan Khomtchouk. Last updated 5 months ago.

chipseqgeneticsannotationgenomeannotationdifferentialpeakcallingcoveragepeakdetectionchiponchiphistonemodificationdataimportnaturallanguageprocessingvisualizationgosoftwarebioconductorbioinformaticscchip-seqcomputational-biologyepigeneticsfunctional-annotation

9 stars 3.95 score 5 scripts