Showing 156 of total 156 results (show query)

eltebioinformatics

mulea:Enrichment Analysis Using Multiple Ontologies and False Discovery Rate

Background - Traditional gene set enrichment analyses are typically limited to a few ontologies and do not account for the interdependence of gene sets or terms, resulting in overcorrected p-values. To address these challenges, we introduce mulea, an R package offering comprehensive overrepresentation and functional enrichment analysis. Results - mulea employs a progressive empirical false discovery rate (eFDR) method, specifically designed for interconnected biological data, to accurately identify significant terms within diverse ontologies. mulea expands beyond traditional tools by incorporating a wide range of ontologies, encompassing Gene Ontology, pathways, regulatory elements, genomic locations, and protein domains. This flexibility enables researchers to tailor enrichment analysis to their specific questions, such as identifying enriched transcriptional regulators in gene expression data or overrepresented protein domains in protein sets. To facilitate seamless analysis, mulea provides gene sets (in standardised GMT format) for 27 model organisms, covering 22 ontology types from 16 databases and various identifiers resulting in almost 900 files. Additionally, the muleaData ExperimentData Bioconductor package simplifies access to these pre-defined ontologies. Finally, mulea's architecture allows for easy integration of user-defined ontologies, or GMT files from external sources (e.g., MSigDB or Enrichr), expanding its applicability across diverse research areas. Conclusions - mulea is distributed as a CRAN R package. It offers researchers a powerful and flexible toolkit for functional enrichment analysis, addressing limitations of traditional tools with its progressive eFDR and by supporting a variety of ontologies. Overall, mulea fosters the exploration of diverse biological questions across various model organisms.

Maintained by Tamas Stirling. Last updated 3 months ago.

annotationdifferentialexpressiongeneexpressiongenesetenrichmentgographandnetworkmultiplecomparisonpathwaysreactomesoftwaretranscriptionvisualizationenrichmentenrichment-analysisfunctional-enrichment-analysisgene-set-enrichmentontologiestranscriptomicscpp

25.7 match 28 stars 7.36 score 34 scripts

bioc

annotate:Annotation for microarrays

Using R enviroments for annotation.

Maintained by Bioconductor Package Maintainer. Last updated 5 months ago.

annotationpathwaysgo

8.3 match 11.41 score 812 scripts 243 dependents

bioc

BiocGenerics:S4 generic functions used in Bioconductor

The package defines many S4 generic functions used in Bioconductor.

Maintained by Hervé Pagès. Last updated 1 months ago.

infrastructurebioconductor-packagecore-package

5.0 match 12 stars 14.22 score 612 scripts 2.2k dependents

bioc

Category:Category Analysis

A collection of tools for performing category (gene set enrichment) analysis.

Maintained by Bioconductor Package Maintainer. Last updated 5 months ago.

annotationgopathwaysgenesetenrichment

6.0 match 7.93 score 183 scripts 16 dependents

bioc

ViSEAGO:ViSEAGO: a Bioconductor package for clustering biological functions using Gene Ontology and semantic similarity

The main objective of ViSEAGO package is to carry out a data mining of biological functions and establish links between genes involved in the study. We developed ViSEAGO in R to facilitate functional Gene Ontology (GO) analysis of complex experimental design with multiple comparisons of interest. It allows to study large-scale datasets together and visualize GO profiles to capture biological knowledge. The acronym stands for three major concepts of the analysis: Visualization, Semantic similarity and Enrichment Analysis of Gene Ontology. It provides access to the last current GO annotations, which are retrieved from one of NCBI EntrezGene, Ensembl or Uniprot databases for several species. Using available R packages and novel developments, ViSEAGO extends classical functional GO analysis to focus on functional coherence by aggregating closely related biological themes while studying multiple datasets at once. It provides both a synthetic and detailed view using interactive functionalities respecting the GO graph structure and ensuring functional coherence supplied by semantic similarity. ViSEAGO has been successfully applied on several datasets from different species with a variety of biological questions. Results can be easily shared between bioinformaticians and biologists, enhancing reporting capabilities while maintaining reproducibility.

Maintained by Aurelien Brionne. Last updated 2 months ago.

softwareannotationgogenesetenrichmentmultiplecomparisonclusteringvisualization

6.3 match 6.64 score 22 scripts

bioc

gwascat:representing and modeling data in the EMBL-EBI GWAS catalog

Represent and model data in the EMBL-EBI GWAS catalog.

Maintained by VJ Carey. Last updated 5 months ago.

genetics

5.4 match 6.05 score 110 scripts 2 dependents

bioc

geneXtendeR:Optimized Functional Annotation Of ChIP-seq Data

geneXtendeR optimizes the functional annotation of ChIP-seq peaks by exploring relative differences in annotating ChIP-seq peak sets to variable-length gene bodies. In contrast to prior techniques, geneXtendeR considers peak annotations beyond just the closest gene, allowing users to see peak summary statistics for the first-closest gene, second-closest gene, ..., n-closest gene whilst ranking the output according to biologically relevant events and iteratively comparing the fidelity of peak-to-gene overlap across a user-defined range of upstream and downstream extensions on the original boundaries of each gene's coordinates. Since different ChIP-seq peak callers produce different differentially enriched peaks with a large variance in peak length distribution and total peak count, annotating peak lists with their nearest genes can often be a noisy process. As such, the goal of geneXtendeR is to robustly link differentially enriched peaks with their respective genes, thereby aiding experimental follow-up and validation in designing primers for a set of prospective gene candidates during qPCR.

Maintained by Bohdan Khomtchouk. Last updated 5 months ago.

chipseqgeneticsannotationgenomeannotationdifferentialpeakcallingcoveragepeakdetectionchiponchiphistonemodificationdataimportnaturallanguageprocessingvisualizationgosoftwarebioconductorbioinformaticscchip-seqcomputational-biologyepigeneticsfunctional-annotation

5.3 match 9 stars 3.95 score 5 scripts

bioc

GraphAT:Graph Theoretic Association Tests

Functions and data used in Balasubramanian, et al. (2004)

Maintained by Thomas LaFramboise. Last updated 5 months ago.

networkgraphandnetwork

6.5 match 2.30 score 4 scripts

bioc

goSTAG:A tool to use GO Subtrees to Tag and Annotate Genes within a set

Gene lists derived from the results of genomic analyses are rich in biological information. For instance, differentially expressed genes (DEGs) from a microarray or RNA-Seq analysis are related functionally in terms of their response to a treatment or condition. Gene lists can vary in size, up to several thousand genes, depending on the robustness of the perturbations or how widely different the conditions are biologically. Having a way to associate biological relatedness between hundreds and thousands of genes systematically is impractical by manually curating the annotation and function of each gene. Over-representation analysis (ORA) of genes was developed to identify biological themes. Given a Gene Ontology (GO) and an annotation of genes that indicate the categories each one fits into, significance of the over-representation of the genes within the ontological categories is determined by a Fisher's exact test or modeling according to a hypergeometric distribution. Comparing a small number of enriched biological categories for a few samples is manageable using Venn diagrams or other means for assessing overlaps. However, with hundreds of enriched categories and many samples, the comparisons are laborious. Furthermore, if there are enriched categories that are shared between samples, trying to represent a common theme across them is highly subjective. goSTAG uses GO subtrees to tag and annotate genes within a set. goSTAG visualizes the similarities between the over-representation of DEGs by clustering the p-values from the enrichment statistical tests and labels clusters with the GO term that has the most paths to the root within the subtree generated from all the GO terms in the cluster.

Maintained by Brian D. Bennett. Last updated 5 months ago.

geneexpressiondifferentialexpressiongenesetenrichmentclusteringmicroarraymrnamicroarrayrnaseqvisualizationgoimmunooncology

0.8 match 4.30 score 1 scripts

bioc

GSEAmining:Make Biological Sense of Gene Set Enrichment Analysis Outputs

Gene Set Enrichment Analysis is a very powerful and interesting computational method that allows an easy correlation between differential expressed genes and biological processes. Unfortunately, although it was designed to help researchers to interpret gene expression data it can generate huge amounts of results whose biological meaning can be difficult to interpret. Many available tools rely on the hierarchically structured Gene Ontology (GO) classification to reduce reundandcy in the results. However, due to the popularity of GSEA many more gene set collections, such as those in the Molecular Signatures Database are emerging. Since these collections are not organized as those in GO, their usage for GSEA do not always give a straightforward answer or, in other words, getting all the meaninful information can be challenging with the currently available tools. For these reasons, GSEAmining was born to be an easy tool to create reproducible reports to help researchers make biological sense of GSEA outputs. Given the results of GSEA, GSEAmining clusters the different gene sets collections based on the presence of the same genes in the leadind edge (core) subset. Leading edge subsets are those genes that contribute most to the enrichment score of each collection of genes or gene sets. For this reason, gene sets that participate in similar biological processes should share genes in common and in turn cluster together. After that, GSEAmining is able to identify and represent for each cluster: - The most enriched terms in the names of gene sets (as wordclouds) - The most enriched genes in the leading edge subsets (as bar plots). In each case, positive and negative enrichments are shown in different colors so it is easy to distinguish biological processes or genes that may be of interest in that particular study.

Maintained by Oriol Arqués. Last updated 5 months ago.

genesetenrichmentclusteringvisualization

0.5 match 4.00 score 7 scripts