Showing 200 of total 457 results (show query)

bioc

GRaNIE:GRaNIE: Reconstruction cell type specific gene regulatory networks including enhancers using single-cell or bulk chromatin accessibility and RNA-seq data

Genetic variants associated with diseases often affect non-coding regions, thus likely having a regulatory role. To understand the effects of genetic variants in these regulatory regions, identifying genes that are modulated by specific regulatory elements (REs) is crucial. The effect of gene regulatory elements, such as enhancers, is often cell-type specific, likely because the combinations of transcription factors (TFs) that are regulating a given enhancer have cell-type specific activity. This TF activity can be quantified with existing tools such as diffTF and captures differences in binding of a TF in open chromatin regions. Collectively, this forms a gene regulatory network (GRN) with cell-type and data-specific TF-RE and RE-gene links. Here, we reconstruct such a GRN using single-cell or bulk RNAseq and open chromatin (e.g., using ATACseq or ChIPseq for open chromatin marks) and optionally (Capture) Hi-C data. Our network contains different types of links, connecting TFs to regulatory elements, the latter of which is connected to genes in the vicinity or within the same chromatin domain (TAD). We use a statistical framework to assign empirical FDRs and weights to all links using a permutation-based approach.

Maintained by Christian Arnold. Last updated 5 months ago.

softwaregeneexpressiongeneregulationnetworkinferencegenesetenrichmentbiomedicalinformaticsgeneticstranscriptomicsatacseqrnaseqgraphandnetworkregressiontranscriptionchipseq

41.8 match 5.40 score 24 scripts

wasquith

lmomco:L-Moments, Censored L-Moments, Trimmed L-Moments, L-Comoments, and Many Distributions

Extensive functions for Lmoments (LMs) and probability-weighted moments (PWMs), distribution parameter estimation, LMs for distributions, LM ratio diagrams, multivariate Lcomoments, and asymmetric (asy) trimmed LMs (TLMs). Maximum likelihood and maximum product spacings estimation are available. Right-tail and left-tail LM censoring by threshold or indicator variable are available. LMs of residual (resid) and reversed (rev) residual life are implemented along with 13 quantile operators for reliability analyses. Exact analytical bootstrap estimates of order statistics, LMs, and LM var-covars are available. Harri-Coble Tau34-squared Normality Test is available. Distributions with L, TL, and added (+) support for right-tail censoring (RC) encompass: Asy Exponential (Exp) Power [L], Asy Triangular [L], Cauchy [TL], Eta-Mu [L], Exp. [L], Gamma [L], Generalized (Gen) Exp Poisson [L], Gen Extreme Value [L], Gen Lambda [L, TL], Gen Logistic [L], Gen Normal [L], Gen Pareto [L+RC, TL], Govindarajulu [L], Gumbel [L], Kappa [L], Kappa-Mu [L], Kumaraswamy [L], Laplace [L], Linear Mean Residual Quantile Function [L], Normal [L], 3p log-Normal [L], Pearson Type III [L], Polynomial Density-Quantile 3 and 4 [L], Rayleigh [L], Rev-Gumbel [L+RC], Rice [L], Singh Maddala [L], Slash [TL], 3p Student t [L], Truncated Exponential [L], Wakeby [L], and Weibull [L].

Maintained by William Asquith. Last updated 1 months ago.

flood-frequency-analysisl-momentsmle-estimationmps-estimationprobability-distributionrainfall-frequency-analysisreliability-analysisrisk-analysissurvival-analysis

26.0 match 2 stars 8.06 score 458 scripts 38 dependents

bioc

geneXtendeR:Optimized Functional Annotation Of ChIP-seq Data

geneXtendeR optimizes the functional annotation of ChIP-seq peaks by exploring relative differences in annotating ChIP-seq peak sets to variable-length gene bodies. In contrast to prior techniques, geneXtendeR considers peak annotations beyond just the closest gene, allowing users to see peak summary statistics for the first-closest gene, second-closest gene, ..., n-closest gene whilst ranking the output according to biologically relevant events and iteratively comparing the fidelity of peak-to-gene overlap across a user-defined range of upstream and downstream extensions on the original boundaries of each gene's coordinates. Since different ChIP-seq peak callers produce different differentially enriched peaks with a large variance in peak length distribution and total peak count, annotating peak lists with their nearest genes can often be a noisy process. As such, the goal of geneXtendeR is to robustly link differentially enriched peaks with their respective genes, thereby aiding experimental follow-up and validation in designing primers for a set of prospective gene candidates during qPCR.

Maintained by Bohdan Khomtchouk. Last updated 5 months ago.

chipseqgeneticsannotationgenomeannotationdifferentialpeakcallingcoveragepeakdetectionchiponchiphistonemodificationdataimportnaturallanguageprocessingvisualizationgosoftwarebioconductorbioinformaticscchip-seqcomputational-biologyepigeneticsfunctional-annotation

28.7 match 9 stars 3.95 score 5 scripts

bioc

ChIPQC:Quality metrics for ChIPseq data

Quality metrics for ChIPseq data.

Maintained by Tom Carroll. Last updated 5 months ago.

sequencingchipseqqualitycontrolreportwriting

19.8 match 5.45 score 140 scripts

bioc

PROcess:Ciphergen SELDI-TOF Processing

A package for processing protein mass spectrometry data.

Maintained by Xiaochun Li. Last updated 5 months ago.

immunooncologymassspectrometryproteomics

15.3 match 6.04 score 552 scripts

bioc

chipseq:chipseq: A package for analyzing chipseq data

Tools for helping process short read data for chipseq experiments.

Maintained by Bioconductor Package Maintainer. Last updated 5 months ago.

chipseqsequencingcoveragequalitycontroldataimport

13.3 match 6.34 score 91 scripts 4 dependents

joshuaulrich

quantmod:Quantitative Financial Modelling Framework

Specify, build, trade, and analyse quantitative financial trading strategies.

Maintained by Joshua M. Ulrich. Last updated 14 days ago.

algorithmic-tradingchartingdata-importfinancetime-series

5.2 match 839 stars 16.17 score 8.1k scripts 343 dependents

bioxgeo

geodiv:Methods for Calculating Gradient Surface Metrics

Methods for calculating gradient surface metrics for continuous analysis of landscape features.

Maintained by Annie C. Smith. Last updated 1 years ago.

cpp

7.5 match 11 stars 5.88 score 23 scripts 1 dependents

tjfarrar

skedastic:Handling Heteroskedasticity in the Linear Regression Model

Implements numerous methods for testing for, modelling, and correcting for heteroskedasticity in the classical linear regression model. The most novel contribution of the package is found in the functions that implement the as-yet-unpublished auxiliary linear variance models and auxiliary nonlinear variance models that are designed to estimate error variances in a heteroskedastic linear regression model. These models follow principles of statistical learning described in Hastie (2009) <doi:10.1007/978-0-387-21606-5>. The nonlinear version of the model is estimated using quasi-likelihood methods as described in Seber and Wild (2003, ISBN: 0-471-47135-6). Bootstrap methods for approximate confidence intervals for error variances are implemented as described in Efron and Tibshirani (1993, ISBN: 978-1-4899-4541-9), including also the expansion technique described in Hesterberg (2014) <doi:10.1080/00031305.2015.1089789>. The wild bootstrap employed here follows the description in Davidson and Flachaire (2008) <doi:10.1016/j.jeconom.2008.08.003>. Tuning of hyper-parameters makes use of a golden section search function that is modelled after the MATLAB function of Zarnowiec (2022) <https://www.mathworks.com/matlabcentral/fileexchange/25919-golden-section-method-algorithm>. A methodological description of the algorithm can be found in Fox (2021, ISBN: 978-1-003-00957-3). There are 25 different functions that implement hypothesis tests for heteroskedasticity. These include a test based on Anscombe (1961) <https://projecteuclid.org/euclid.bsmsp/1200512155>, Ramsey's (1969) BAMSET Test <doi:10.1111/j.2517-6161.1969.tb00796.x>, the tests of Bickel (1978) <doi:10.1214/aos/1176344124>, Breusch and Pagan (1979) <doi:10.2307/1911963> with and without the modification proposed by Koenker (1981) <doi:10.1016/0304-4076(81)90062-2>, Carapeto and Holt (2003) <doi:10.1080/0266476022000018475>, Cook and Weisberg (1983) <doi:10.1093/biomet/70.1.1> (including their graphical methods), Diblasi and Bowman (1997) <doi:10.1016/S0167-7152(96)00115-0>, Dufour, Khalaf, Bernard, and Genest (2004) <doi:10.1016/j.jeconom.2003.10.024>, Evans and King (1985) <doi:10.1016/0304-4076(85)90085-5> and Evans and King (1988) <doi:10.1016/0304-4076(88)90006-1>, Glejser (1969) <doi:10.1080/01621459.1969.10500976> as formulated by Mittelhammer, Judge and Miller (2000, ISBN: 0-521-62394-4), Godfrey and Orme (1999) <doi:10.1080/07474939908800438>, Goldfeld and Quandt (1965) <doi:10.1080/01621459.1965.10480811>, Harrison and McCabe (1979) <doi:10.1080/01621459.1979.10482544>, Harvey (1976) <doi:10.2307/1913974>, Honda (1989) <doi:10.1111/j.2517-6161.1989.tb01749.x>, Horn (1981) <doi:10.1080/03610928108828074>, Li and Yao (2019) <doi:10.1016/j.ecosta.2018.01.001> with and without the modification of Bai, Pan, and Yin (2016) <doi:10.1007/s11749-017-0575-x>, Rackauskas and Zuokas (2007) <doi:10.1007/s10986-007-0018-6>, Simonoff and Tsai (1994) <doi:10.2307/2986026> with and without the modification of Ferrari, Cysneiros, and Cribari-Neto (2004) <doi:10.1016/S0378-3758(03)00210-6>, Szroeter (1978) <doi:10.2307/1913831>, Verbyla (1993) <doi:10.1111/j.2517-6161.1993.tb01918.x>, White (1980) <doi:10.2307/1912934>, Wilcox and Keselman (2006) <doi:10.1080/10629360500107923>, Yuce (2008) <https://dergipark.org.tr/en/pub/iuekois/issue/8989/112070>, and Zhou, Song, and Thompson (2015) <doi:10.1002/cjs.11252>. Besides these heteroskedasticity tests, there are supporting functions that compute the BLUS residuals of Theil (1965) <doi:10.1080/01621459.1965.10480851>, the conditional two-sided p-values of Kulinskaya (2008) <arXiv:0810.2124v1>, and probabilities for the nonparametric trend statistic of Lehmann (1975, ISBN: 0-816-24996-1). For handling heteroskedasticity, in addition to the new auxiliary variance model methods, there is a function to implement various existing Heteroskedasticity-Consistent Covariance Matrix Estimators from the literature, such as those of White (1980) <doi:10.2307/1912934>, MacKinnon and White (1985) <doi:10.1016/0304-4076(85)90158-7>, Cribari-Neto (2004) <doi:10.1016/S0167-9473(02)00366-3>, Cribari-Neto et al. (2007) <doi:10.1080/03610920601126589>, Cribari-Neto and da Silva (2011) <doi:10.1007/s10182-010-0141-2>, Aftab and Chang (2016) <doi:10.18187/pjsor.v12i2.983>, and Li et al. (2017) <doi:10.1080/00949655.2016.1198906>.

Maintained by Thomas Farrar. Last updated 1 years ago.

8.6 match 7 stars 4.60 score 73 scripts

craig-pt

tsgc:Time Series Methods Based on Growth Curves

The 'tsgc' package provides comprehensive tools for the analysis and forecasting of epidemic trajectories. It is designed to model the progression of an epidemic over time while accounting for the various uncertainties inherent in real-time data. Underpinned by a dynamic Gompertz model, the package adopts a state space approach, using the Kalman filter for flexible and robust estimation of the non-linear growth pattern commonly observed in epidemic data. The reinitialization feature enhances the model’s ability to adapt to the emergence of new waves. The forecasts generated by the package are of value to public health officials and researchers who need to understand and predict the course of an epidemic to inform decision-making. Beyond its application in public health, the package is also a useful resource for researchers and practitioners in fields where the trajectories of interest resemble those of epidemics, such as innovation diffusion. The package includes functionalities for data preprocessing, model fitting, and forecast visualization, as well as tools for evaluating forecast accuracy. The core methodologies implemented in 'tsgc' are based on well-established statistical techniques as described in Harvey and Kattuman (2020) <doi:10.1162/99608f92.828f40de>, Harvey and Kattuman (2021) <doi:10.1098/rsif.2021.0179>, and Ashby, Harvey, Kattuman, and Thamotheram (2024) <https://www.jbs.cam.ac.uk/wp-content/uploads/2024/03/cchle-tsgc-paper-2024.pdf>.

Maintained by Craig Thamotheram. Last updated 7 months ago.

6.9 match 1 stars 4.86 score 24 scripts

alanarnholt

BSDA:Basic Statistics and Data Analysis

Data sets for book "Basic Statistics and Data Analysis" by Larry J. Kitchens.

Maintained by Alan T. Arnholt. Last updated 2 years ago.

3.4 match 7 stars 9.11 score 1.3k scripts 6 dependents

cshs-hydrology

CSHShydRology:Canadian Hydrological Analyses

A collection of user submitted functions to aid in the analysis of hydrological data.

Maintained by Kevin Shook. Last updated 3 years ago.

5.5 match 4 stars 5.26 score 23 scripts