Showing 87 of total 87 results (show query)

branchlab

metasnf:Meta Clustering with Similarity Network Fusion

Framework to facilitate patient subtyping with similarity network fusion and meta clustering. The similarity network fusion (SNF) algorithm was introduced by Wang et al. (2014) in <doi:10.1038/nmeth.2810>. SNF is a data integration approach that can transform high-dimensional and diverse data types into a single similarity network suitable for clustering with minimal loss of information from each initial data source. The meta clustering approach was introduced by Caruana et al. (2006) in <doi:10.1109/ICDM.2006.103>. Meta clustering involves generating a wide range of cluster solutions by adjusting clustering hyperparameters, then clustering the solutions themselves into a manageable number of qualitatively similar solutions, and finally characterizing representative solutions to find ones that are best for the user's specific context. This package provides a framework to easily transform multi-modal data into a wide range of similarity network fusion-derived cluster solutions as well as to visualize, characterize, and validate those solutions. Core package functionality includes easy customization of distance metrics, clustering algorithms, and SNF hyperparameters to generate diverse clustering solutions; calculation and plotting of associations between features, between patients, and between cluster solutions; and standard cluster validation approaches including resampled measures of cluster stability, standard metrics of cluster quality, and label propagation to evaluate generalizability in unseen data. Associated vignettes guide the user through using the package to identify patient subtypes while adhering to best practices for unsupervised learning.

Maintained by Prashanth S Velayudhan. Last updated 6 days ago.

bioinformaticsclusteringmetaclusteringsnf

85.3 match 8 stars 8.21 score 30 scripts

jakubnowicki

fixtuRes:Mock Data Generator

Generate mock data in R using YAML configuration.

Maintained by Jakub Nowicki. Last updated 3 years ago.

fixturesmock-datamock-data-generatortest-data-generatoryaml-configuration

18.1 match 16 stars 4.98 score 12 scripts

georgekoliopanos

modgo:MOck Data GeneratiOn

Generation of mock data from a real dataset using rank normal inverse transformation.

Maintained by George Koliopanos. Last updated 9 months ago.

7.9 match 1 stars 4.00 score 3 scripts

nflverse

nflreadr:Download 'nflverse' Data

A minimal package for downloading data from 'GitHub' repositories of the 'nflverse' project.

Maintained by Tan Ho. Last updated 4 months ago.

nflnflfastrnflversesports-data

1.6 match 67 stars 12.29 score 476 scripts 10 dependents

bioc

BASiCS:Bayesian Analysis of Single-Cell Sequencing data

Single-cell mRNA sequencing can uncover novel cell-to-cell heterogeneity in gene expression levels in seemingly homogeneous populations of cells. However, these experiments are prone to high levels of technical noise, creating new challenges for identifying genes that show genuine heterogeneous expression within the population of cells under study. BASiCS (Bayesian Analysis of Single-Cell Sequencing data) is an integrated Bayesian hierarchical model to perform statistical analyses of single-cell RNA sequencing datasets in the context of supervised experiments (where the groups of cells of interest are known a priori, e.g. experimental conditions or cell types). BASiCS performs built-in data normalisation (global scaling) and technical noise quantification (based on spike-in genes). BASiCS provides an intuitive detection criterion for highly (or lowly) variable genes within a single group of cells. Additionally, BASiCS can compare gene expression patterns between two or more pre-specified groups of cells. Unlike traditional differential expression tools, BASiCS quantifies changes in expression that lie beyond comparisons of means, also allowing the study of changes in cell-to-cell heterogeneity. The latter can be quantified via a biological over-dispersion parameter that measures the excess of variability that is observed with respect to Poisson sampling noise, after normalisation and technical noise removal. Due to the strong mean/over-dispersion confounding that is typically observed for scRNA-seq datasets, BASiCS also tests for changes in residual over-dispersion, defined by residual values with respect to a global mean/over-dispersion trend.

Maintained by Catalina Vallejos. Last updated 5 months ago.

immunooncologynormalizationsequencingrnaseqsoftwaregeneexpressiontranscriptomicssinglecelldifferentialexpressionbayesiancellbiologybioconductor-packagegene-expressionrcpprcpparmadilloscrna-seqsingle-cellopenblascppopenmp

1.9 match 83 stars 10.14 score 368 scripts 1 dependents