Showing 200 of total 643 results (show query)

nschiett

fishualize:Color Palettes Based on Fish Species

Implementation of color palettes based on fish species.

Maintained by Nina M. D. Schiettekatte. Last updated 11 months ago.

6.2 match 155 stars 8.54 score 370 scripts

lleisong

itsdm:Isolation Forest-Based Presence-Only Species Distribution Modeling

Collection of R functions to do purely presence-only species distribution modeling with isolation forest (iForest) and its variations such as Extended isolation forest and SCiForest. See the details of these methods in references: Liu, F.T., Ting, K.M. and Zhou, Z.H. (2008) <doi:10.1109/ICDM.2008.17>, Hariri, S., Kind, M.C. and Brunner, R.J. (2019) <doi:10.1109/TKDE.2019.2947676>, Liu, F.T., Ting, K.M. and Zhou, Z.H. (2010) <doi:10.1007/978-3-642-15883-4_18>, Guha, S., Mishra, N., Roy, G. and Schrijvers, O. (2016) <https://proceedings.mlr.press/v48/guha16.html>, Cortes, D. (2021) <arXiv:2110.13402>. Additionally, Shapley values are used to explain model inputs and outputs. See details in references: Shapley, L.S. (1953) <doi:10.1515/9781400881970-018>, Lundberg, S.M. and Lee, S.I. (2017) <https://dl.acm.org/doi/abs/10.5555/3295222.3295230>, Molnar, C. (2020) <ISBN:978-0-244-76852-2>, ล trumbelj, E. and Kononenko, I. (2014) <doi:10.1007/s10115-013-0679-x>. itsdm also provides functions to diagnose variable response, analyze variable importance, draw spatial dependence of variables and examine variable contribution. As utilities, the package includes a few functions to download bioclimatic variables including 'WorldClim' version 2.0 (see Fick, S.E. and Hijmans, R.J. (2017) <doi:10.1002/joc.5086>) and 'CMCC-BioClimInd' (see Noce, S., Caporaso, L. and Santini, M. (2020) <doi:10.1038/s41597-020-00726-5>.

Maintained by Lei Song. Last updated 2 years ago.

isolation-forestoutlier-detectionpresence-onlymodelshapley-valuespecies-distribution-modelling

8.0 match 4 stars 5.59 score 65 scripts

guido-s

netmeta:Network Meta-Analysis using Frequentist Methods

A comprehensive set of functions providing frequentist methods for network meta-analysis (Balduzzi et al., 2023) <doi:10.18637/jss.v106.i02> and supporting Schwarzer et al. (2015) <doi:10.1007/978-3-319-21416-0>, Chapter 8 "Network Meta-Analysis": - frequentist network meta-analysis following Rรผcker (2012) <doi:10.1002/jrsm.1058>; - additive network meta-analysis for combinations of treatments (Rรผcker et al., 2020) <doi:10.1002/bimj.201800167>; - network meta-analysis of binary data using the Mantel-Haenszel or non-central hypergeometric distribution method (Efthimiou et al., 2019) <doi:10.1002/sim.8158>, or penalised logistic regression (Evrenoglou et al., 2022) <doi:10.1002/sim.9562>; - rankograms and ranking of treatments by the Surface under the cumulative ranking curve (SUCRA) (Salanti et al., 2013) <doi:10.1016/j.jclinepi.2010.03.016>; - ranking of treatments using P-scores (frequentist analogue of SUCRAs without resampling) according to Rรผcker & Schwarzer (2015) <doi:10.1186/s12874-015-0060-8>; - split direct and indirect evidence to check consistency (Dias et al., 2010) <doi:10.1002/sim.3767>, (Efthimiou et al., 2019) <doi:10.1002/sim.8158>; - league table with network meta-analysis results; - 'comparison-adjusted' funnel plot (Chaimani & Salanti, 2012) <doi:10.1002/jrsm.57>; - net heat plot and design-based decomposition of Cochran's Q according to Krahn et al. (2013) <doi:10.1186/1471-2288-13-35>; - measures characterizing the flow of evidence between two treatments by Kรถnig et al. (2013) <doi:10.1002/sim.6001>; - automated drawing of network graphs described in Rรผcker & Schwarzer (2016) <doi:10.1002/jrsm.1143>; - partial order of treatment rankings ('poset') and Hasse diagram for 'poset' (Carlsen & Bruggemann, 2014) <doi:10.1002/cem.2569>; (Rรผcker & Schwarzer, 2017) <doi:10.1002/jrsm.1270>; - contribution matrix as described in Papakonstantinou et al. (2018) <doi:10.12688/f1000research.14770.3> and Davies et al. (2022) <doi:10.1002/sim.9346>; - subgroup network meta-analysis.

Maintained by Guido Schwarzer. Last updated 1 days ago.

meta-analysisnetwork-meta-analysisrstudio

2.3 match 33 stars 11.82 score 199 scripts 10 dependents

ropensci

stplanr:Sustainable Transport Planning

Tools for transport planning with an emphasis on spatial transport data and non-motorized modes. The package was originally developed to support the 'Propensity to Cycle Tool', a publicly available strategic cycle network planning tool (Lovelace et al. 2017) <doi:10.5198/jtlu.2016.862>, but has since been extended to support public transport routing and accessibility analysis (Moreno-Monroy et al. 2017) <doi:10.1016/j.jtrangeo.2017.08.012> and routing with locally hosted routing engines such as 'OSRM' (Lowans et al. 2023) <doi:10.1016/j.enconman.2023.117337>. The main functions are for creating and manipulating geographic "desire lines" from origin-destination (OD) data (building on the 'od' package); calculating routes on the transport network locally and via interfaces to routing services such as <https://cyclestreets.net/> (Desjardins et al. 2021) <doi:10.1007/s11116-021-10197-1>; and calculating route segment attributes such as bearing. The package implements the 'travel flow aggregration' method described in Morgan and Lovelace (2020) <doi:10.1177/2399808320942779> and the 'OD jittering' method described in Lovelace et al. (2022) <doi:10.32866/001c.33873>. Further information on the package's aim and scope can be found in the vignettes and in a paper in the R Journal (Lovelace and Ellison 2018) <doi:10.32614/RJ-2018-053>, and in a paper outlining the landscape of open source software for geographic methods in transport planning (Lovelace, 2021) <doi:10.1007/s10109-020-00342-2>.

Maintained by Robin Lovelace. Last updated 7 months ago.

cyclecyclingdesire-linesorigin-destinationpeer-reviewedpubic-transportroute-networkroutesroutingspatialtransporttransport-planningtransportationwalking

2.0 match 427 stars 12.31 score 684 scripts 3 dependents

sbgraves237

sos:Search Contributed R Packages, Sort by Package

Search contributed R packages, sort by package.

Maintained by Spencer Graves. Last updated 9 months ago.

3.5 match 2 stars 6.82 score 241 scripts 3 dependents

loukiaspin

rnmamod:Bayesian Network Meta-Analysis with Missing Participants

A comprehensive suite of functions to perform and visualise pairwise and network meta-analysis with aggregate binary or continuous missing participant outcome data. The package covers core Bayesian one-stage models implemented in a systematic review with multiple interventions, including fixed-effect and random-effects network meta-analysis, meta-regression, evaluation of the consistency assumption via the node-splitting approach and the unrelated mean effects model (original and revised model proposed by Spineli, (2022) <doi:10.1177/0272989X211068005>), and sensitivity analysis (see Spineli et al., (2021) <doi:10.1186/s12916-021-02195-y>). Missing participant outcome data are addressed in all models of the package (see Spineli, (2019) <doi:10.1186/s12874-019-0731-y>, Spineli et al., (2019) <doi:10.1002/sim.8207>, Spineli, (2019) <doi:10.1016/j.jclinepi.2018.09.002>, and Spineli et al., (2021) <doi:10.1002/jrsm.1478>). The robustness to primary analysis results can also be investigated using a novel intuitive index (see Spineli et al., (2021) <doi:10.1177/0962280220983544>). Methods to evaluate the transitivity assumption quantitatively are provided (see Spineli, (2024) <doi:10.1186/s12874-024-02436-7>). A novel index to facilitate interpretation of local inconsistency is also available (see Spineli, (2024) <doi:0.1186/s13643-024-02680-4>) The package also offers a rich, user-friendly visualisation toolkit that aids in appraising and interpreting the results thoroughly and preparing the manuscript for journal submission. The visualisation tools comprise the network plot, forest plots, panel of diagnostic plots, heatmaps on the extent of missing participant outcome data in the network, league heatmaps on estimation and prediction, rankograms, Bland-Altman plot, leverage plot, deviance scatterplot, heatmap of robustness, barplot of Kullback-Leibler divergence, heatmap of comparison dissimilarities and dendrogram of comparison clustering. The package also allows the user to export the results to an Excel file at the working directory.

Maintained by Loukia Spineli. Last updated 9 days ago.

jagscpp

3.5 match 5 stars 6.64 score 12 scripts

ropensci

weatherOz:An API Client for Australian Weather and Climate Data Resources

Provides automated downloading, parsing and formatting of weather data for Australia through API endpoints provided by the Department of Primary Industries and Regional Development ('DPIRD') of Western Australia and by the Science and Technology Division of the Queensland Government's Department of Environment and Science ('DES'). As well as the Bureau of Meteorology ('BOM') of the Australian government precis and coastal forecasts, and downloading and importing radar and satellite imagery files. 'DPIRD' weather data are accessed through public 'APIs' provided by 'DPIRD', <https://www.agric.wa.gov.au/weather-api-20>, providing access to weather station data from the 'DPIRD' weather station network. Australia-wide weather data are based on data from the Australian Bureau of Meteorology ('BOM') data and accessed through 'SILO' (Scientific Information for Land Owners) Jeffrey et al. (2001) <doi:10.1016/S1364-8152(01)00008-1>. 'DPIRD' data are made available under a Creative Commons Attribution 3.0 Licence (CC BY 3.0 AU) license <https://creativecommons.org/licenses/by/3.0/au/deed.en>. SILO data are released under a Creative Commons Attribution 4.0 International licence (CC BY 4.0) <https://creativecommons.org/licenses/by/4.0/>. 'BOM' data are (c) Australian Government Bureau of Meteorology and released under a Creative Commons (CC) Attribution 3.0 licence or Public Access Licence ('PAL') as appropriate, see <http://www.bom.gov.au/other/copyright.shtml> for further details.

Maintained by Rodrigo Pires. Last updated 19 days ago.

dpirdbommeteorological-dataweather-forecastaustraliaweatherweather-datameteorologywestern-australiaaustralia-bureau-of-meteorologywestern-australia-agricultureaustralia-agricultureaustralia-climateaustralia-weatherapi-clientclimatedatarainfallweather-api

2.7 match 32 stars 8.54 score 40 scripts

haghish

shapley:Weighted Mean SHAP and CI for Robust Feature Selection in ML Grid

This R package introduces Weighted Mean SHapley Additive exPlanations (WMSHAP), an innovative method for calculating SHAP values for a grid of fine-tuned base-learner machine learning models as well as stacked ensembles, a method not previously available due to the common reliance on single best-performing models. By integrating the weighted mean SHAP values from individual base-learners comprising the ensemble or individual base-learners in a tuning grid search, the package weights SHAP contributions according to each model's performance, assessed by multiple either R squared (for both regression and classification models). alternatively, this software also offers weighting SHAP values based on the area under the precision-recall curve (AUCPR), the area under the curve (AUC), and F2 measures for binary classifiers. It further extends this framework to implement weighted confidence intervals for weighted mean SHAP values, offering a more comprehensive and robust feature importance evaluation over a grid of machine learning models, instead of solely computing SHAP values for the best model. This methodology is particularly beneficial for addressing the severe class imbalance (class rarity) problem by providing a transparent, generalized measure of feature importance that mitigates the risk of reporting SHAP values for an overfitted or biased model and maintains robustness under severe class imbalance, where there is no universal criteria of identifying the absolute best model. Furthermore, the package implements hypothesis testing to ascertain the statistical significance of SHAP values for individual features, as well as comparative significance testing of SHAP contributions between features. Additionally, it tackles a critical gap in feature selection literature by presenting criteria for the automatic feature selection of the most important features across a grid of models or stacked ensembles, eliminating the need for arbitrary determination of the number of top features to be extracted. This utility is invaluable for researchers analyzing feature significance, particularly within severely imbalanced outcomes where conventional methods fall short. Moreover, it is also expected to report democratic feature importance across a grid of models, resulting in a more comprehensive and generalizable feature selection. The package further implements a novel method for visualizing SHAP values both at subject level and feature level as well as a plot for feature selection based on the weighted mean SHAP ratios.

Maintained by E. F. Haghish. Last updated 2 days ago.

class-imbalanceclass-imbalance-problemfeature-extractionfeature-importancefeature-selectionmachine-learningmachine-learning-algorithmsshapshap-analysisshap-valuesshapelyshapley-additive-explanationsshapley-decompositionshapley-valueshapley-valuesshapleyvalueweighted-shapweighted-shap-confidence-intervalweighted-shapleyweighted-shapley-ci

4.3 match 14 stars 5.19 score 17 scripts

qsbase

qs:Quick Serialization of R Objects

Provides functions for quickly writing and reading any R object to and from disk.

Maintained by Travers Ching. Last updated 9 days ago.

compressiondata-storageencodingserializationlibzstdlz4cpp

1.5 match 414 stars 13.91 score 2.5k scripts 51 dependents

r-forge

distr:Object Oriented Implementation of Distributions

S4-classes and methods for distributions.

Maintained by Peter Ruckdeschel. Last updated 2 months ago.

2.4 match 8.84 score 327 scripts 32 dependents

braverock

PortfolioAnalytics:Portfolio Analysis, Including Numerical Methods for Optimization of Portfolios

Portfolio optimization and analysis routines and graphics.

Maintained by Brian G. Peterson. Last updated 3 months ago.

1.8 match 81 stars 11.49 score 626 scripts 2 dependents

janmarvin

openxlsx2:Read, Write and Edit 'xlsx' Files

Simplifies the creation of 'xlsx' files by providing a high level interface to writing, styling and editing worksheets.

Maintained by Jan Marvin Garbuszus. Last updated 16 hours ago.

xlsxcpp

1.5 match 138 stars 13.67 score 194 scripts 11 dependents

bioc

BASiCS:Bayesian Analysis of Single-Cell Sequencing data

Single-cell mRNA sequencing can uncover novel cell-to-cell heterogeneity in gene expression levels in seemingly homogeneous populations of cells. However, these experiments are prone to high levels of technical noise, creating new challenges for identifying genes that show genuine heterogeneous expression within the population of cells under study. BASiCS (Bayesian Analysis of Single-Cell Sequencing data) is an integrated Bayesian hierarchical model to perform statistical analyses of single-cell RNA sequencing datasets in the context of supervised experiments (where the groups of cells of interest are known a priori, e.g. experimental conditions or cell types). BASiCS performs built-in data normalisation (global scaling) and technical noise quantification (based on spike-in genes). BASiCS provides an intuitive detection criterion for highly (or lowly) variable genes within a single group of cells. Additionally, BASiCS can compare gene expression patterns between two or more pre-specified groups of cells. Unlike traditional differential expression tools, BASiCS quantifies changes in expression that lie beyond comparisons of means, also allowing the study of changes in cell-to-cell heterogeneity. The latter can be quantified via a biological over-dispersion parameter that measures the excess of variability that is observed with respect to Poisson sampling noise, after normalisation and technical noise removal. Due to the strong mean/over-dispersion confounding that is typically observed for scRNA-seq datasets, BASiCS also tests for changes in residual over-dispersion, defined by residual values with respect to a global mean/over-dispersion trend.

Maintained by Catalina Vallejos. Last updated 5 months ago.

immunooncologynormalizationsequencingrnaseqsoftwaregeneexpressiontranscriptomicssinglecelldifferentialexpressionbayesiancellbiologybioconductor-packagegene-expressionrcpprcpparmadilloscrna-seqsingle-cellopenblascppopenmp

1.6 match 83 stars 10.26 score 368 scripts 1 dependents

berwinturlach

quadprog:Functions to Solve Quadratic Programming Problems

This package contains routines and documentation for solving quadratic programming problems.

Maintained by Berwin A. Turlach. Last updated 5 years ago.

fortranopenblas

1.6 match 3 stars 10.27 score 972 scripts 1.2k dependents

ikosmidis

brglm2:Bias Reduction in Generalized Linear Models

Estimation and inference from generalized linear models based on various methods for bias reduction and maximum penalized likelihood with powers of the Jeffreys prior as penalty. The 'brglmFit' fitting method can achieve reduction of estimation bias by solving either the mean bias-reducing adjusted score equations in Firth (1993) <doi:10.1093/biomet/80.1.27> and Kosmidis and Firth (2009) <doi:10.1093/biomet/asp055>, or the median bias-reduction adjusted score equations in Kenne et al. (2017) <doi:10.1093/biomet/asx046>, or through the direct subtraction of an estimate of the bias of the maximum likelihood estimator from the maximum likelihood estimates as in Cordeiro and McCullagh (1991) <https://www.jstor.org/stable/2345592>. See Kosmidis et al (2020) <doi:10.1007/s11222-019-09860-6> for more details. Estimation in all cases takes place via a quasi Fisher scoring algorithm, and S3 methods for the construction of of confidence intervals for the reduced-bias estimates are provided. In the special case of generalized linear models for binomial and multinomial responses (both ordinal and nominal), the adjusted score approaches to mean and media bias reduction have been found to return estimates with improved frequentist properties, that are also always finite, even in cases where the maximum likelihood estimates are infinite (e.g. complete and quasi-complete separation; see Kosmidis and Firth, 2020 <doi:10.1093/biomet/asaa052>, for a proof for mean bias reduction in logistic regression).

Maintained by Ioannis Kosmidis. Last updated 6 months ago.

adjusted-score-equationsalgorithmsbias-reducing-adjustmentsbias-reductionestimationglmlogistic-regressionnominal-responsesordinal-responsesregressionregression-algorithmsstatistics

1.5 match 32 stars 10.41 score 106 scripts 10 dependents

paulnorthrop

lax:Loglikelihood Adjustment for Extreme Value Models

Performs adjusted inferences based on model objects fitted, using maximum likelihood estimation, by the extreme value analysis packages 'eva' <https://cran.r-project.org/package=eva>, 'evd' <https://cran.r-project.org/package=evd>, 'evir' <https://cran.r-project.org/package=evir>, 'extRemes' <https://cran.r-project.org/package=extRemes>, 'fExtremes' <https://cran.r-project.org/package=fExtremes>, 'ismev' <https://cran.r-project.org/package=ismev>, 'mev' <https://cran.r-project.org/package=mev>, 'POT' <https://cran.r-project.org/package=POT> and 'texmex' <https://cran.r-project.org/package=texmex>. Adjusted standard errors and an adjusted loglikelihood are provided, using the 'chandwich' package <https://cran.r-project.org/package=chandwich> and the object-oriented features of the 'sandwich' package <https://cran.r-project.org/package=sandwich>. The adjustment is based on a robust sandwich estimator of the parameter covariance matrix, based on the methodology in Chandler and Bate (2007) <doi:10.1093/biomet/asm015>. This can be used for cluster correlated data when interest lies in the parameters of the marginal distributions, or for performing inferences that are robust to certain types of model misspecification. Univariate extreme value models, including regression models, are supported.

Maintained by Paul J. Northrop. Last updated 1 years ago.

clustered-dataclusterscomposite-likelihoodevdextreme-value-analysisextreme-value-statisticsextremesindependence-loglikelihoodloglikelihood-adjustmentmlepotregressionregression-modellingrobustsandwichsandwich-estimator

3.6 match 3 stars 4.29 score 13 scripts

r-gregmisc

gmodels:Various R Programming Tools for Model Fitting

Various R programming tools for model fitting.

Maintained by Gregory R. Warnes. Last updated 3 months ago.

1.5 match 1 stars 10.01 score 3.5k scripts 30 dependents