Showing 200 of total 1870 results (show query)

cran

nlme:Linear and Nonlinear Mixed Effects Models

Fit and compare Gaussian linear and nonlinear mixed-effects models.

Maintained by R Core Team. Last updated 2 months ago.

fortran

15.7 match 6 stars 13.00 score 13k scripts 8.7k dependents

doomlab

MOTE:Effect Size and Confidence Interval Calculator

Measure of the Effect ('MOTE') is an effect size calculator, including a wide variety of effect sizes in the mean differences family (all versions of d) and the variance overlap family (eta, omega, epsilon, r). 'MOTE' provides non-central confidence intervals for each effect size, relevant test statistics, and output for reporting in APA Style (American Psychological Association, 2010, <ISBN:1433805618>) with 'LaTeX'. In research, an over-reliance on p-values may conceal the fact that a study is under-powered (Halsey, Curran-Everett, Vowler, & Drummond, 2015 <doi:10.1038/nmeth.3288>). A test may be statistically significant, yet practically inconsequential (Fritz, Scherndl, & Kรผhberger, 2012 <doi:10.1177/0959354312436870>). Although the American Psychological Association has long advocated for the inclusion of effect sizes (Wilkinson & American Psychological Association Task Force on Statistical Inference, 1999 <doi:10.1037/0003-066X.54.8.594>), the vast majority of peer-reviewed, published academic studies stop short of reporting effect sizes and confidence intervals (Cumming, 2013, <doi:10.1177/0956797613504966>). 'MOTE' simplifies the use and interpretation of effect sizes and confidence intervals. For more information, visit <https://www.aggieerin.com/shiny-server>.

Maintained by Erin M. Buchanan. Last updated 3 years ago.

confidenceeffectintervalsizestatistics

26.3 match 17 stars 6.69 score 320 scripts 1 dependents

bioc

mixOmics:Omics Data Integration Project

Multivariate methods are well suited to large omics data sets where the number of variables (e.g. genes, proteins, metabolites) is much larger than the number of samples (patients, cells, mice). They have the appealing properties of reducing the dimension of the data by using instrumental variables (components), which are defined as combinations of all variables. Those components are then used to produce useful graphical outputs that enable better understanding of the relationships and correlation structures between the different data sets that are integrated. mixOmics offers a wide range of multivariate methods for the exploration and integration of biological datasets with a particular focus on variable selection. The package proposes several sparse multivariate models we have developed to identify the key variables that are highly correlated, and/or explain the biological outcome of interest. The data that can be analysed with mixOmics may come from high throughput sequencing technologies, such as omics data (transcriptomics, metabolomics, proteomics, metagenomics etc) but also beyond the realm of omics (e.g. spectral imaging). The methods implemented in mixOmics can also handle missing values without having to delete entire rows with missing data. A non exhaustive list of methods include variants of generalised Canonical Correlation Analysis, sparse Partial Least Squares and sparse Discriminant Analysis. Recently we implemented integrative methods to combine multiple data sets: N-integration with variants of Generalised Canonical Correlation Analysis and P-integration with variants of multi-group Partial Least Squares.

Maintained by Eva Hamrud. Last updated 6 days ago.

immunooncologymicroarraysequencingmetabolomicsmetagenomicsproteomicsgenepredictionmultiplecomparisonclassificationregressionbioconductorgenomicsgenomics-datagenomics-visualizationmultivariate-analysismultivariate-statisticsomicsr-pkgr-project

9.4 match 182 stars 13.71 score 1.3k scripts 22 dependents

tidymodels

infer:Tidy Statistical Inference

The objective of this package is to perform inference using an expressive statistical grammar that coheres with the tidy design framework.

Maintained by Simon Couch. Last updated 6 months ago.

7.8 match 736 stars 15.75 score 3.5k scripts 18 dependents

cran

FuzzySTs:Fuzzy Statistical Tools

The main goal of this package is to present various fuzzy statistical tools. It intends to provide an implementation of the theoretical and empirical approaches presented in the book entitled "The signed distance measure in fuzzy statistical analysis. Some theoretical, empirical and programming advances" <doi: 10.1007/978-3-030-76916-1>. For the theoretical approaches, see Berkachy R. and Donze L. (2019) <doi:10.1007/978-3-030-03368-2_1>. For the empirical approaches, see Berkachy R. and Donze L. (2016) <ISBN: 978-989-758-201-1>). Important (non-exhaustive) implementation highlights of this package are as follows: (1) a numerical procedure to estimate the fuzzy difference and the fuzzy square. (2) two numerical methods of fuzzification. (3) a function performing different possibilities of distances, including the signed distance and the generalized signed distance for instance with all its properties. (4) numerical estimations of fuzzy statistical measures such as the variance, the moment, etc. (5) two methods of estimation of the bootstrap distribution of the likelihood ratio in the fuzzy context. (6) an estimation of a fuzzy confidence interval by the likelihood ratio method. (7) testing fuzzy hypotheses and/or fuzzy data by fuzzy confidence intervals in the Kwakernaak - Kruse and Meyer sense. (8) a general method to estimate the fuzzy p-value with fuzzy hypotheses and/or fuzzy data. (9) a method of estimation of global and individual evaluations of linguistic questionnaires. (10) numerical estimations of multi-ways analysis of variance models in the fuzzy context. The unbalance in the considered designs are also foreseen.

Maintained by Redina Berkachy. Last updated 8 months ago.

23.9 match 3.40 score

mhenderson

wallis:Room squares in R

Room squares in R.

Maintained by Matthew Henderson. Last updated 7 months ago.

combinatorial-designscombinatoricsroom-squares

31.9 match 2.54 score 1 scripts

r-lib

scales:Scale Functions for Visualization

Graphical scales map data to aesthetics, and provide methods for automatically determining breaks and labels for axes and legends.

Maintained by Thomas Lin Pedersen. Last updated 5 months ago.

ggplot2

3.8 match 419 stars 19.88 score 88k scripts 7.9k dependents

joemsong

FunChisq:Model-Free Functional Chi-Squared and Exact Tests

Statistical hypothesis testing methods for inferring model-free functional dependency using asymptotic chi-squared or exact distributions. Functional test statistics are asymmetric and functionally optimal, unique from other related statistics. Tests in this package reveal evidence for causality based on the causality-by- functionality principle. They include asymptotic functional chi-squared tests (Zhang & Song 2013) <doi:10.48550/arXiv.1311.2707>, an adapted functional chi-squared test (Kumar & Song 2022) <doi:10.1093/bioinformatics/btac206>, and an exact functional test (Zhong & Song 2019) <doi:10.1109/TCBB.2018.2809743> (Nguyen et al. 2020) <doi:10.24963/ijcai.2020/372>. The normalized functional chi-squared test was used by Best Performer 'NMSUSongLab' in HPN-DREAM (DREAM8) Breast Cancer Network Inference Challenges (Hill et al. 2016) <doi:10.1038/nmeth.3773>. A function index (Zhong & Song 2019) <doi:10.1186/s12920-019-0565-9> (Kumar et al. 2018) <doi:10.1109/BIBM.2018.8621502> derived from the functional test statistic offers a new effect size measure for the strength of functional dependency, a better alternative to conditional entropy in many aspects. For continuous data, these tests offer an advantage over regression analysis when a parametric functional form cannot be assumed; for categorical data, they provide a novel means to assess directional dependency not possible with symmetrical Pearson's chi-squared or Fisher's exact tests.

Maintained by Joe Song. Last updated 10 months ago.

cpp

16.3 match 4.37 score 29 scripts

heliosdrm

pwr:Basic Functions for Power Analysis

Power analysis functions along the lines of Cohen (1988).

Maintained by Helios De Rosario. Last updated 1 years ago.

5.2 match 105 stars 12.97 score 2.6k scripts 28 dependents

cran

sae:Small Area Estimation

Functions for small area estimation.

Maintained by Yolanda Marhuenda. Last updated 5 years ago.

11.5 match 6 stars 5.49 score 83 scripts 8 dependents

r-spatial

spdep:Spatial Dependence: Weighting Schemes, Statistics

A collection of functions to create spatial weights matrix objects from polygon 'contiguities', from point patterns by distance and tessellations, for summarizing these objects, and for permitting their use in spatial data analysis, including regional aggregation by minimum spanning tree; a collection of tests for spatial 'autocorrelation', including global 'Morans I' and 'Gearys C' proposed by 'Cliff' and 'Ord' (1973, ISBN: 0850860369) and (1981, ISBN: 0850860814), 'Hubert/Mantel' general cross product statistic, Empirical Bayes estimates and 'Assunรงรฃo/Reis' (1999) <doi:10.1002/(SICI)1097-0258(19990830)18:16%3C2147::AID-SIM179%3E3.0.CO;2-I> Index, 'Getis/Ord' G ('Getis' and 'Ord' 1992) <doi:10.1111/j.1538-4632.1992.tb00261.x> and multicoloured join count statistics, 'APLE' ('Li 'et al.' ) <doi:10.1111/j.1538-4632.2007.00708.x>, local 'Moran's I', 'Gearys C' ('Anselin' 1995) <doi:10.1111/j.1538-4632.1995.tb00338.x> and 'Getis/Ord' G ('Ord' and 'Getis' 1995) <doi:10.1111/j.1538-4632.1995.tb00912.x>, 'saddlepoint' approximations ('Tiefelsdorf' 2002) <doi:10.1111/j.1538-4632.2002.tb01084.x> and exact tests for global and local 'Moran's I' ('Bivand et al.' 2009) <doi:10.1016/j.csda.2008.07.021> and 'LOSH' local indicators of spatial heteroscedasticity ('Ord' and 'Getis') <doi:10.1007/s00168-011-0492-y>. The implementation of most of these measures is described in 'Bivand' and 'Wong' (2018) <doi:10.1007/s11749-018-0599-x>, with further extensions in 'Bivand' (2022) <doi:10.1111/gean.12319>. 'Lagrange' multiplier tests for spatial dependence in linear models are provided ('Anselin et al'. 1996) <doi:10.1016/0166-0462(95)02111-6>, as are 'Rao' score tests for hypothesised spatial 'Durbin' models based on linear models ('Koley' and 'Bera' 2023) <doi:10.1080/17421772.2023.2256810>. A local indicators for categorical data (LICD) implementation based on 'Carrer et al.' (2021) <doi:10.1016/j.jas.2020.105306> and 'Bivand et al.' (2017) <doi:10.1016/j.spasta.2017.03.003> was added in 1.3-7. From 'spdep' and 'spatialreg' versions >= 1.2-1, the model fitting functions previously present in this package are defunct in 'spdep' and may be found in 'spatialreg'.

Maintained by Roger Bivand. Last updated 20 days ago.

spatial-autocorrelationspatial-dependencespatial-weights

3.4 match 131 stars 16.62 score 6.0k scripts 107 dependents

laplacesdemonr

LaplacesDemon:Complete Environment for Bayesian Inference

Provides a complete environment for Bayesian inference using a variety of different samplers (see ?LaplacesDemon for an overview).

Maintained by Henrik Singmann. Last updated 12 months ago.

4.0 match 93 stars 13.45 score 1.8k scripts 60 dependents

briencj

asremlPlus:Augments 'ASReml-R' in Fitting Mixed Models and Packages Generally in Exploring Prediction Differences

Assists in automating the selection of terms to include in mixed models when 'asreml' is used to fit the models. Procedures are available for choosing models that conform to the hierarchy or marginality principle, for fitting and choosing between two-dimensional spatial models using correlation, natural cubic smoothing spline and P-spline models. A history of the fitting of a sequence of models is kept in a data frame. Also used to compute functions and contrasts of, to investigate differences between and to plot predictions obtained using any model fitting function. The content falls into the following natural groupings: (i) Data, (ii) Model modification functions, (iii) Model selection and description functions, (iv) Model diagnostics and simulation functions, (v) Prediction production and presentation functions, (vi) Response transformation functions, (vii) Object manipulation functions, and (viii) Miscellaneous functions (for further details see 'asremlPlus-package' in help). The 'asreml' package provides a computationally efficient algorithm for fitting a wide range of linear mixed models using Residual Maximum Likelihood. It is a commercial package and a license for it can be purchased from 'VSNi' <https://vsni.co.uk/> as 'asreml-R', who will supply a zip file for local installation/updating (see <https://asreml.kb.vsni.co.uk/>). It is not needed for functions that are methods for 'alldiffs' and 'data.frame' objects. The package 'asremPlus' can also be installed from <http://chris.brien.name/rpackages/>.

Maintained by Chris Brien. Last updated 30 days ago.

asremlmixed-models

5.8 match 19 stars 9.34 score 200 scripts

topepo

caret:Classification and Regression Training

Misc functions for training and plotting classification and regression models.

Maintained by Max Kuhn. Last updated 3 months ago.

2.8 match 1.6k stars 19.24 score 61k scripts 303 dependents

kurthornik

clue:Cluster Ensembles

CLUster Ensembles.

Maintained by Kurt Hornik. Last updated 4 months ago.

5.3 match 2 stars 9.85 score 496 scripts 401 dependents

r-forge

expm:Matrix Exponential, Log, 'etc'

Computation of the matrix exponential, logarithm, sqrt, and related quantities, using traditional and modern methods.

Maintained by Martin Maechler. Last updated 5 months ago.

fortranopenblas

3.8 match 11.91 score 1.3k scripts 432 dependents

faosorios

fastmatrix:Fast Computation of some Matrices Useful in Statistics

Small set of functions to fast computation of some matrices and operations useful in statistics and econometrics. Currently, there are functions for efficient computation of duplication, commutation and symmetrizer matrices with minimal storage requirements. Some commonly used matrix decompositions (LU and LDL), basic matrix operations (for instance, Hadamard, Kronecker products and the Sherman-Morrison formula) and iterative solvers for linear systems are also available. In addition, the package includes a number of common statistical procedures such as the sweep operator, weighted mean and covariance matrix using an online algorithm, linear regression (using Cholesky, QR, SVD, sweep operator and conjugate gradients methods), ridge regression (with optimal selection of the ridge parameter considering several procedures), omnibus tests for univariate normality, functions to compute the multivariate skewness, kurtosis, the Mahalanobis distance (checking the positive defineteness), and the Wilson-Hilferty transformation of gamma variables. Furthermore, the package provides interfaces to C code callable by another C code from other R packages.

Maintained by Felipe Osorio. Last updated 1 years ago.

commutation-matrixjarque-bera-testldl-factorizationlu-factorizationmatrix-api-for-r-packagesmatrix-normsmodified-choleskyols-regressionpower-methodridge-regressionsherman-morrisonstatisticssweep-operatorsymmetrizer-matrixfortranopenblas

7.1 match 19 stars 6.27 score 37 scripts 10 dependents

bioxgeo

geodiv:Methods for Calculating Gradient Surface Metrics

Methods for calculating gradient surface metrics for continuous analysis of landscape features.

Maintained by Annie C. Smith. Last updated 1 years ago.

cpp

7.1 match 11 stars 5.88 score 23 scripts 1 dependents

eikeluedeling

chillR:Statistical Methods for Phenology Analysis in Temperate Fruit Trees

The phenology of plants (i.e. the timing of their annual life phases) depends on climatic cues. For temperate trees and many other plants, spring phases, such as leaf emergence and flowering, have been found to result from the effects of both cool (chilling) conditions and heat. Fruit tree scientists (pomologists) have developed some metrics to quantify chilling and heat (e.g. see Luedeling (2012) <doi:10.1016/j.scienta.2012.07.011>). 'chillR' contains functions for processing temperature records into chilling (Chilling Hours, Utah Chill Units and Chill Portions) and heat units (Growing Degree Hours). Regarding chilling metrics, Chill Portions are often considered the most promising, but they are difficult to calculate. This package makes it easy. 'chillR' also contains procedures for conducting a PLS analysis relating phenological dates (e.g. bloom dates) to either mean temperatures or mean chill and heat accumulation rates, based on long-term weather and phenology records (Luedeling and Gassner (2012) <doi:10.1016/j.agrformet.2011.10.020>). As of version 0.65, it also includes functions for generating weather scenarios with a weather generator, for conducting climate change analyses for temperature-based climatic metrics and for plotting results from such analyses. Since version 0.70, 'chillR' contains a function for interpolating hourly temperature records.

Maintained by Eike Luedeling. Last updated 4 months ago.

cpp

6.7 match 3 stars 6.13 score 346 scripts 1 dependents

bioc

ropls:PCA, PLS(-DA) and OPLS(-DA) for multivariate analysis and feature selection of omics data

Latent variable modeling with Principal Component Analysis (PCA) and Partial Least Squares (PLS) are powerful methods for visualization, regression, classification, and feature selection of omics data where the number of variables exceeds the number of samples and with multicollinearity among variables. Orthogonal Partial Least Squares (OPLS) enables to separately model the variation correlated (predictive) to the factor of interest and the uncorrelated (orthogonal) variation. While performing similarly to PLS, OPLS facilitates interpretation. Successful applications of these chemometrics techniques include spectroscopic data such as Raman spectroscopy, nuclear magnetic resonance (NMR), mass spectrometry (MS) in metabolomics and proteomics, but also transcriptomics data. In addition to scores, loadings and weights plots, the package provides metrics and graphics to determine the optimal number of components (e.g. with the R2 and Q2 coefficients), check the validity of the model by permutation testing, detect outliers, and perform feature selection (e.g. with Variable Importance in Projection or regression coefficients). The package can be accessed via a user interface on the Workflow4Metabolomics.org online resource for computational metabolomics (built upon the Galaxy environment).

Maintained by Etienne A. Thevenot. Last updated 5 months ago.

regressionclassificationprincipalcomponenttranscriptomicsproteomicsmetabolomicslipidomicsmassspectrometryimmunooncology

5.4 match 7.55 score 210 scripts 8 dependents

mwheymans

psfmi:Prediction Model Pooling, Selection and Performance Evaluation Across Multiply Imputed Datasets

Pooling, backward and forward selection of linear, logistic and Cox regression models in multiply imputed datasets. Backward and forward selection can be done from the pooled model using Rubin's Rules (RR), the D1, D2, D3, D4 and the median p-values method. This is also possible for Mixed models. The models can contain continuous, dichotomous, categorical and restricted cubic spline predictors and interaction terms between all these type of predictors. The stability of the models can be evaluated using (cluster) bootstrapping. The package further contains functions to pool model performance measures as ROC/AUC, Reclassification, R-squared, scaled Brier score, H&L test and calibration plots for logistic regression models. Internal validation can be done across multiply imputed datasets with cross-validation or bootstrapping. The adjusted intercept after shrinkage of pooled regression coefficients can be obtained. Backward and forward selection as part of internal validation is possible. A function to externally validate logistic prediction models in multiple imputed datasets is available and a function to compare models. For Cox models a strata variable can be included. Eekhout (2017) <doi:10.1186/s12874-017-0404-7>. Wiel (2009) <doi:10.1093/biostatistics/kxp011>. Marshall (2009) <doi:10.1186/1471-2288-9-57>.

Maintained by Martijn Heymans. Last updated 2 years ago.

cox-regressionimputationimputed-datasetslogisticmultiple-imputationpoolpredictorregressionselectionsplinespline-predictors

5.6 match 10 stars 7.17 score 70 scripts

robinhankin

ResistorArray:Electrical Properties of Resistor Networks

Electrical properties of resistor networks using matrix methods.

Maintained by Robin K. S. Hankin. Last updated 1 years ago.

9.0 match 4.32 score 14 scripts 1 dependents

merck

r2rtf:Easily Create Production-Ready Rich Text Format (RTF) Tables and Figures

Create production-ready Rich Text Format (RTF) tables and figures with flexible format.

Maintained by Benjamin Wang. Last updated 8 days ago.

3.5 match 78 stars 10.82 score 171 scripts 10 dependents