Showing 60 of total 60 results (show query)

mclements

rstpm2:Smooth Survival Models, Including Generalized Survival Models

R implementation of generalized survival models (GSMs), smooth accelerated failure time (AFT) models and Markov multi-state models. For the GSMs, g(S(t|x))=eta(t,x) for a link function g, survival S at time t with covariates x and a linear predictor eta(t,x). The main assumption is that the time effect(s) are smooth <doi:10.1177/0962280216664760>. For fully parametric models with natural splines, this re-implements Stata's 'stpm2' function, which are flexible parametric survival models developed by Royston and colleagues. We have extended the parametric models to include any smooth parametric smoothers for time. We have also extended the model to include any smooth penalized smoothers from the 'mgcv' package, using penalized likelihood. These models include left truncation, right censoring, interval censoring, gamma frailties and normal random effects <doi:10.1002/sim.7451>, and copulas. For the smooth AFTs, S(t|x) = S_0(t*eta(t,x)), where the baseline survival function S_0(t)=exp(-exp(eta_0(t))) is modelled for natural splines for eta_0, and the time-dependent cumulative acceleration factor eta(t,x)=\int_0^t exp(eta_1(u,x)) du for log acceleration factor eta_1(u,x). The Markov multi-state models allow for a range of models with smooth transitions to predict transition probabilities, length of stay, utilities and costs, with differences, ratios and standardisation.

Maintained by Mark Clements. Last updated 5 months ago.

fortranopenblascpp

3.6 match 28 stars 11.01 score 137 scripts 50 dependents

laplacesdemonr

LaplacesDemon:Complete Environment for Bayesian Inference

Provides a complete environment for Bayesian inference using a variety of different samplers (see ?LaplacesDemon for an overview).

Maintained by Henrik Singmann. Last updated 12 months ago.

2.3 match 93 stars 13.45 score 1.8k scripts 60 dependents

fauvernierma

survPen:Multidimensional Penalized Splines for (Excess) Hazard Models, Relative Mortality Ratio Models and Marginal Intensity Models

Fits (excess) hazard, relative mortality ratio or marginal intensity models with multidimensional penalized splines allowing for time-dependent effects, non-linear effects and interactions between several continuous covariates. In survival and net survival analysis, in addition to modelling the effect of time (via the baseline hazard), one has often to deal with several continuous covariates and model their functional forms, their time-dependent effects, and their interactions. Model specification becomes therefore a complex problem and penalized regression splines represent an appealing solution to that problem as splines offer the required flexibility while penalization limits overfitting issues. Current implementations of penalized survival models can be slow or unstable and sometimes lack some key features like taking into account expected mortality to provide net survival and excess hazard estimates. In contrast, survPen provides an automated, fast, and stable implementation (thanks to explicit calculation of the derivatives of the likelihood) and offers a unified framework for multidimensional penalized hazard and excess hazard models. Later versions (>2.0.0) include penalized models for relative mortality ratio, and marginal intensity in recurrent event setting. survPen may be of interest to those who 1) analyse any kind of time-to-event data: mortality, disease relapse, machinery breakdown, unemployment, etc 2) wish to describe the associated hazard and to understand which predictors impact its dynamics, 3) wish to model the relative mortality ratio between a cohort and a reference population, 4) wish to describe the marginal intensity for recurrent event data. See Fauvernier et al. (2019a) <doi:10.21105/joss.01434> for an overview of the package and Fauvernier et al. (2019b) <doi:10.1111/rssc.12368> for the method.

Maintained by Mathieu Fauvernier. Last updated 4 months ago.

cpp

3.4 match 12 stars 6.82 score 85 scripts 1 dependents

spatstat

spatstat.linnet:Linear Networks Functionality of the 'spatstat' Family

Defines types of spatial data on a linear network and provides functionality for geometrical operations, data analysis and modelling of data on a linear network, in the 'spatstat' family of packages. Contains definitions and support for linear networks, including creation of networks, geometrical measurements, topological connectivity, geometrical operations such as inserting and deleting vertices, intersecting a network with another object, and interactive editing of networks. Data types defined on a network include point patterns, pixel images, functions, and tessellations. Exploratory methods include kernel estimation of intensity on a network, K-functions and pair correlation functions on a network, simulation envelopes, nearest neighbour distance and empty space distance, relative risk estimation with cross-validated bandwidth selection. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the function lppm() similar to glm(). Only Poisson models are implemented so far. Models may involve dependence on covariates and dependence on marks. Models are fitted by maximum likelihood. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots. Random point patterns on a network can be generated using a variety of models.

Maintained by Adrian Baddeley. Last updated 2 months ago.

density-estimationheat-equationkernel-density-estimationnetwork-analysispoint-processesspatial-data-analysisstatistical-analysisstatistical-inferencestatistical-models

1.9 match 6 stars 9.64 score 35 scripts 43 dependents

spatstat

spatstat.model:Parametric Statistical Modelling and Inference for the 'spatstat' Family

Functionality for parametric statistical modelling and inference for spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Supports parametric modelling, formal statistical inference, and model validation. Parametric models include Poisson point processes, Cox point processes, Neyman-Scott cluster processes, Gibbs point processes and determinantal point processes. Models can be fitted to data using maximum likelihood, maximum pseudolikelihood, maximum composite likelihood and the method of minimum contrast. Fitted models can be simulated and predicted. Formal inference includes hypothesis tests (quadrat counting tests, Cressie-Read tests, Clark-Evans test, Berman test, Diggle-Cressie-Loosmore-Ford test, scan test, studentised permutation test, segregation test, ANOVA tests of fitted models, adjusted composite likelihood ratio test, envelope tests, Dao-Genton test, balanced independent two-stage test), confidence intervals for parameters, and prediction intervals for point counts. Model validation techniques include leverage, influence, partial residuals, added variable plots, diagnostic plots, pseudoscore residual plots, model compensators and Q-Q plots.

Maintained by Adrian Baddeley. Last updated 8 days ago.

analysis-of-variancecluster-processconfidence-intervalscox-processdeterminantal-point-processesgibbs-processinfluenceleveragemodel-diagnosticsneyman-scottparameter-estimationpoisson-processspatial-analysisspatial-modellingspatial-point-processesstatistical-inference

1.7 match 5 stars 9.09 score 6 scripts 46 dependents

r-forge

distrEx:Extensions of Package 'distr'

Extends package 'distr' by functionals, distances, and conditional distributions.

Maintained by Matthias Kohl. Last updated 2 months ago.

2.0 match 6.68 score 107 scripts 17 dependents

cran

gss:General Smoothing Splines

A comprehensive package for structural multivariate function estimation using smoothing splines.

Maintained by Chong Gu. Last updated 5 months ago.

fortranopenblas

1.9 match 3 stars 6.40 score 137 dependents

mikejareds

hermiter:Efficient Sequential and Batch Estimation of Univariate and Bivariate Probability Density Functions and Cumulative Distribution Functions along with Quantiles (Univariate) and Nonparametric Correlation (Bivariate)

Facilitates estimation of full univariate and bivariate probability density functions and cumulative distribution functions along with full quantile functions (univariate) and nonparametric correlation (bivariate) using Hermite series based estimators. These estimators are particularly useful in the sequential setting (both stationary and non-stationary) and one-pass batch estimation setting for large data sets. Based on: Stephanou, Michael, Varughese, Melvin and Macdonald, Iain. "Sequential quantiles via Hermite series density estimation." Electronic Journal of Statistics 11.1 (2017): 570-607 <doi:10.1214/17-EJS1245>, Stephanou, Michael and Varughese, Melvin. "On the properties of Hermite series based distribution function estimators." Metrika (2020) <doi:10.1007/s00184-020-00785-z> and Stephanou, Michael and Varughese, Melvin. "Sequential estimation of Spearman rank correlation using Hermite series estimators." Journal of Multivariate Analysis (2021) <doi:10.1016/j.jmva.2021.104783>.

Maintained by Michael Stephanou. Last updated 7 months ago.

cumulative-distribution-functionkendall-correlation-coefficientonline-algorithmsprobability-density-functionquantilespearman-correlation-coefficientstatisticsstreaming-algorithmsstreaming-datacpp

1.6 match 15 stars 5.58 score 17 scripts